

ESP32
AT Instruction Set and Examples

Version 1.3
Espressif Systems
Copyright © 2019

About This Guide
This document introduces the ESP32 AT commands, explains how to use them and
provides examples of several common AT commands.

Release Notes

Documentation Change Notification
Espressif provides email notifications to keep customers updated on changes to
technical documentation. Please subscribe at https://www.espressif.com/en/subscribe.

Certification
Download certificates for Espressif products from https://www.espressif.com/en/
certificates.

Date Version Release notes

2017.11 V1.0 Initial release.

2018.06 V1.1

Updated Section 4.2.15，5.2.8，5.2.15，6.2.5，
6.2.11 and Chapter 8.

Added Section 5.2.9，6.2.29，6.2.30，9.5.2.2.

2018.12 V1.2 Update Chapter 1 and Section 5.2.3.

2019.06 V1.3 Corrected a typo in Section 4.2.3.

https://www.espressif.com/en/subscribe
https://www.espressif.com/en/certificates
https://www.espressif.com/en/certificates

Table of Contents
1. Overview 1 ..

1.1. User-Defined AT Commands	 1
...
1.2. Downloading AT Firmware into Flash	 1
...

2. Command Description 3 ..

3. Basic AT Commands 4 ...
3.1. Overview	 4
..

3.2. Commands	 4
...
3.2.1. AT—Tests AT Startup	 4
..
3.2.2. AT+RST—Restarts the Module	 4
..
3.2.3. AT+GMR—Checks Version Information	 5
..
3.2.4. AT+GSLP—Enters Deep-sleep Mode	 5
...
3.2.5. ATE—AT Commands Echoing	 5
..

3.2.6. AT+RESTORE—Restores the Factory Default Settings	 5
...
3.2.7. AT+UART_CUR—Current UART Configuration, Not Saved in Flash	 6
......................................
3.2.8. AT+UART_DEF—Default UART Configuration, Saved in Flash	 7
...
3.2.9. AT+SLEEP—Sets the Sleep Mode	 8
..
3.2.10. AT+SYSRAM—Checks the Remaining Space of RAM	 8
..
3.2.11. AT+SYSFLASH—Set User Partitions in Flash *	 8
..

3.2.12. AT+FS—Filesystem Operations *	 9
...
3.2.13. AT+RFPOWER—Set RF TX Power *	 11
...

4. Wi-Fi AT Commands 12 ..
4.1. Overview	 12
..

4.2. Commands	 12
...
4.2.1. AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)	 12
..............................
4.2.2. AT+CWJAP—Connects to an AP	 14
..
4.2.3. AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP	 15
...........................
4.2.4. AT+CWLAP—Lists the Available APs	 16
..
4.2.5. AT+CWQAP—Disconnects from the AP	 16
...

4.2.6. AT+CWSAP—Configuration of the ESP32 SoftAP	 17
...
4.2.7. AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected	 18
................................
4.2.8. AT+CWDHCP—Enables/Disables DHCP	 18
...

4.2.9. AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The
configuration is saved in Flash.)	 19
...

4.2.10. AT+CWAUTOCONN—Auto-Connects to the AP or Not	 19
..
4.2.11. AT+CWSTARTSMART—Starts SmartConfig	 20
..
4.2.12. AT+CWSTOPSMART—Stops SmartConfig	 20
..
4.2.13. AT+WPS—Enables the WPS Function	 21
..
4.2.14. AT+CWHOSTNAME—Configures the Host Name of ESP32 Station *	 21
.................................

4.2.15. AT+MDNS—Configures the MDNS Function *	 21
...

5. TCP/IP-Related AT Commands 23 ..
5.1. Overview	 23
..
5.2. Commands	 24
...

5.2.1. AT+CIPSTATUS—Gets the Connection Status	 24
...
5.2.2. AT+CIPDOMAIN—DNS Function	 24
..
5.2.3. AT+CIPDNS—Sets User-defined DNS Servers; Configuration Saved in the Flash	 24
.............
5.2.4. AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station	 25
...
5.2.5. AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP	 25
...
5.2.6. AT+CIPSTA—Sets the IP Address of the ESP32 Station	 26
...

5.2.7. AT+CIPAP—Sets the IP Address of the ESP32 SoftAP	 26
...
5.2.8. AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL Connection	 27
.....
5.2.9. AT+CIPSSLCCONF—Set Configuration of SSL Client *	 29
..
5.2.10. AT+CIPSEND—Sends Data	 30
...
5.2.11. AT+CIPSENDEX—Sends Data	 31
...
5.2.12. AT+CIPCLOSE—Closes TCP/UDP/SSL Connection	 31
..

5.2.13. AT+CIFSR—Gets the Local IP Address	 32
...
5.2.14. AT+CIPMUX—Enables/Disables Multiple Connections	 32
...
5.2.15. AT+CIPSERVER—Deletes/Creates TCP or SSL Server *	 33
..
5.2.16. AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server *	 33
...........
5.2.17. AT+CIPMODE—Configures the Transmission Mode	 34
...
5.2.18. AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash	 35
........................

5.2.19. AT+CIPSTO—Sets the TCP Server Timeout	 36
...
5.2.20. AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server	 37
..
5.2.21. AT+CIPSNTPTIME—Queries the SNTP Time	 37
...
5.2.22. AT+CIUPDATE—Updates the Software Through Wi-Fi	 37
...
5.2.23. AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"	 38
...
5.2.24. +IPD—Receives Network Data	 38
..

5.2.25. AT+PING—Ping Packets	 39
..

6. BLE-Related AT Commands 40 ...
6.1. Overview	 40
..
6.2. Commands	 42
...

6.2.1. AT+BLEINIT—BLE Initialization	 42
..
6.2.2. AT+BLEADDR—Sets BLE Device's Address	 42
..

6.2.3. AT+BLENAME—Sets BLE Device's Name	 43
...
6.2.4. AT+BLESCANPARAM—Sets Parameters of BLE Scanning	 43
...
6.2.5. AT+BLESCAN—Enables BLE Scanning	 44
...
6.2.6. AT+BLESCANRSPDATA—Sets BLE Scan Response	 45
..
6.2.7. AT+BLEADVPARAM—Sets Parameters of Advertising	 46
..

6.2.8. AT+BLEADVDATA—Sets Advertising Data	 47
...
6.2.9. AT+BLEADVSTART—Starts Advertising	 47
..
6.2.10. AT+BLEADVSTOP—Stops Advertising	 47
...
6.2.11. AT+BLECONN—Establishes BLE connection	 48
..
6.2.12. AT+BLECONNPARAM—Updates parameters of BLE connection	 48
.......................................
6.2.13. AT+BLEDISCONN—Ends BLE connection	 49
..

6.2.14. AT+BLEDATALEN—Sets BLE Data Packet Length	 49
..
6.2.15. AT+BLECFGMTU—Sets GATT MTU Length	 50
..
6.2.16. AT+BLEGATTSSRVCRE—GATTS Creates Services	 50
..
6.2.17. AT+BLEGATTSSRVSTART—GATTS Starts Services	 51
...
6.2.18. AT+BLEGATTSSRVSTOP—GATTS Stops Services	 51
...
6.2.19. AT+BLEGATTSSRV—GATTS Discovers Services	 51
..

6.2.20. AT+BLEGATTSCHAR—GATTS Discovers Characteristics	 52
..
6.2.21. AT+BLEGATTSNTFY—GATTS Notifies of Characteristics	 52
...
6.2.22. AT+BLEGATTSIND—GATTS Indicates Characteristics	 53
..
6.2.23. AT+BLEGATTSSETATTR—GATTS Sets Characteristic	 54
..
6.2.24. AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services	 55
..
6.2.25. AT+BLEGATTCINCLSRV—GATTC Discovers Included Services	 55
...

6.2.26. AT+BLEGATTCCHAR—GATTC Discovers Characteristics	 56
...
6.2.27. AT+BLEGATTCRD—GATTC Reads a Characteristic	 56
...
6.2.28. AT+BLEGATTCWR—GATTC Writes Characteristic	 57
..
6.2.29. AT+BLESPPCFG—Configures BLE SPP	 58
..
6.2.30. AT+BLESPP—Enables BLE SPP	 60
...

6.2.31. AT+BLESECPARAM—Set Parameters of BLE SMP	 61
..

6.2.32. AT+BLEENC—Starts a Pairing Request	 62
..
6.2.33. AT+BLEENCRSP—Sets a Pairing Response	 63
..
6.2.34. AT+BLEKEYREPLY—Reply to a Pairing Key	 63
..
6.2.35. AT+BLECONFREPLY—Reply to a Pairing Result	 63
...
6.2.36. AT+BLEENCDEV—Lists All Devices that Bonded	 64
..
6.2.37. AT+BLEENCCLEAR—Unbind Device	 64
...

7. AT Commands with Configuration Saved in the NVS Area 65 ..

8. AT Messages 66 ..

9. AT Commands Examples 67 ..
9.1. ESP32 as a TCP Client in Single Connection	 67
..
9.2. UDP Transmission	 68
..

9.2.1. UDP (with Fixed Remote IP and Port)	 68
..
9.2.2. UDP (with Changeable Remote IP and Port)	 69
..

9.3. Transparent Transmission	 70
..
9.3.1. ESP32 as a TCP Client in UART-Wi-Fi Passthrough (Single Connection Mode)	 71
..................
9.3.2. UDP Transmission (UART-Wi-Fi PassthroughTransmission)	 72
..

9.4. ESP32 as a TCP Server in Multiple Connections	 74
..
9.5. BLE AT Examples 	 76
..

9.5.1. iBeacon Examples	 76
...

9.5.2. BLE Communication Examples	 78
...

10.OTA Update 90 ...

11.Q & A 96..

!

1. Overview

1. Overview
This document introduces the ESP32 AT commands, and explains how to use them.

The AT command set is divided into different categories: Basic AT commands, Wi-Fi AT
commands, TCP/IP AT commands, etc.

Please note that the AT commands marked with * are beta versions that have not been fully
tested.

1.1. User-Defined AT Commands
Please use only English letters or an underscore (_), when naming user-defined AT
commands. The AT command name must NOT contain characters or numbers.

AT firmware is based on the Espressif IoT Development Framework (ESP-IDF). Espressif
Systems' AT commands are provided in libat_core.a, which is included in the AT BIN
firmware. Examples of customized, user-defined AT commands are provided in esp-at.

The structure, at_cmd_struct, is used to define four types of a command. Examples of
implementing user-defined AT commands are provided in /esp32-at/main/interface/uart/
at_uart_task.c.

1.2. Downloading AT Firmware into Flash
Please use Espressif's official Flash Download Tools to download the firmware. Make sure
you select the corresponding flash size.

Espressif's official Flash Download Tools:  
http://espressif.com/en/support/download/other-tools?keys=&field_type_tid%5B%5D=13.

Download ESP32_AT_BIN: http://www.espressif.com/en/support/download/at.

The flashing addresses are in /ESP32_AT_BIN/download.config.

Please note that there are several binaries for some specific functions, they are listed as
below:

• at_customize.bin is to provide a user partition table, which lists different partitions for
the ble_data.bin, SSL certificates, and factory_param_XXX.bin. Furthermore, users
can add their own users partitions, and read/write the user partitions with the
command AT+FS and AT+SYSFLASH.

• factory_param_XXX.bin indicates the hardware configurations for different ESP
modules. Please make sure the correct bin is used for your specific module. If users
design their own module, they can configure it with reference to the esp32-at/docs/
ESP32_AT_Factory_Parameter_Bin.md, and the binaries will be automatically

📖 Note:

For codes related to ESP32 AT instruction set, please refer to https://github.com/espressif/esp32-at.

Espressif ! /!1 97 2019.06

http://espressif.com/en/support/download/other-tools?keys=&field_type_tid%5B%5D=13
http://www.espressif.com/en/support/download/at
https://github.com/espressif/esp32-at/blob/master/docs/ESP32_AT_Factory_Parameter_Bin.md
https://github.com/espressif/esp32-at/blob/master/docs/ESP32_AT_Factory_Parameter_Bin.md
https://github.com/espressif/esp32-at

!

1. Overview

generated after compilation. When users flash the firmware into the module, the
customized_partitions/factory_param.bin in the download.config should be
replaced with the actual module-specific customized_partitions/
factory_param_XXX.bin.

• ble_data.bin is to provide BLE services when the ESP32 works as a BLE server;

• server_cert.bin, server_key.bin and server_ca.bin are examples of SSL server‘s
certificate;

If some of the functions are not used, then the corresponding binaries need not to be
downloaded into flash.

If all functions are needed, then those binaries have to be downloaded into flash. In this
case, there is a CombineBin button on the ESP Flash Download Tool to combine multiple
binaries into one, to make the downloading easier. Please note that the downloading
addresses of binaries and other flash configurations have to be set correctly while
combining.

If users compile esp32-at by themselves, they can call command 'make	print_flash_cmd'	
and print the download addresses, following the steps below:

• Call rm	sdkconfig to remove the old configuration.
• Call make	defconfig to set the latest default configuration.
• Call make print_flash_cmd to print the download addresses.  

Modules UART Pins（TX, RX, CTS, RTS） Bin

ESP32-WROOM-32 Series

(Default Value)
GPIO17, GPIO16, GPIO15, GPIO14 customized_partitions/

factory_param_WROOM-32.bin

ESP32-WROVER Series GPIO22, GPIO19, GPIO15, GPIO14 customized_partitions/
factory_param_WROVER-32.bin

ESP32-PICO Series GPIO22, GPIO19, GPIO15, GPIO14 customized_partitions/
factory_param_PICO-D4.bin

ESP32-SOLO Series GPIO17, GPIO16, GPIO15, GPIO14 customized_partitions/
factory_param_SOLO-1.bin

📖 Note:

UART CTS and RTS are optional pins, not compulsive.

📖 Note:

• If the ESP32-AT bin fails to boot, and prints log "ota data partition invalid", please erase all flash or
download the blank.bin into the address labeled as "otadata" in esp32-at/partitions_at.csv.

• Users can change to use another UART for AT communication. For example, if you want to use
UART0 for AT communication, you need to:

- make menuconfig -> component config -> AT -> "AT UART settings" to set it to use UART 0

- The debug log will output through UART0 by default, but users can disable it in menuconfig, as:
make menuconfig --> Component config --> ESP32-specific --> UART for console output

• ESP32_AT_Bin/factory stores the ESP AT factory binaries for different ESP official modules.

Espressif ! /!2 97 2019.06

https://github.com/espressif/esp32-at/blob/master/partitions_at.csv

!

2. Command Description

2. Command Description
Each command set contains four types of AT commands.

Type Command Format Description

Test Command AT+<x>=?
Queries the Set Commands' internal
parameters and their range of values.

Query Command AT+<x>? Returns the current value of parameters.

Set Command AT+<x>=<…>
Sets the value of user-defined parameters in
commands, and runs these commands.

Execute Command AT+<x>
Runs commands with no user-defined
parameters.

⚠ Notice:

• Not all AT commands support all four variations mentioned above.

• Square brackets [] designate the default value; it is either not required or may not appear.

• String values need to be included in double quotation marks, for example:
AT+CWSAP="ESP756290","21030826",1,4.

• The default baud rate of AT command is 115200.

• AT commands are ended with a new-line (CR-LF), so the serial tool should be set into "New Line
Mode".

• Definitions of AT command error codes are in esp32-at/components/at/include/esp_at.h.

Espressif ! /!3 97 2019.06

https://github.com/espressif/esp32-at/blob/master/components/at/include/esp_at.h

!

3. Basic AT Commands

3. Basic AT Commands
3.1. Overview

3.2. Commands
3.2.1. AT—Tests AT Startup

3.2.2. AT+RST—Restarts the Module

Commands Description

AT Tests AT startup.

AT+RST Restarts a module.

AT+GMR Checks version information.

AT+GSLP Enters Deep-sleep mode.

ATE Configures echoing of AT commands.

AT+RESTORE Restores the factory default settings of the module.

AT+UART_CUR Current UART configuration.

AT+UART_DEF Default UART configuration, saved in flash.

AT+SLEEP Sets the sleep mode.

AT+SYSRAM Checks the remaining space of RAM.

AT+SYSFLASH Sets user partitions in flash

AT+SYSFS File systems operations

AT+RFPOWER Sets RF TX power

Execute Command AT

Response OK

Parameters -

Execute Command AT+RST

Response OK

Parameters -

Espressif ! /!4 97 2019.06

!

3. Basic AT Commands

3.2.3. AT+GMR—Checks Version Information

3.2.4. AT+GSLP—Enters Deep-sleep Mode

3.2.5. ATE—AT Commands Echoing

3.2.6. AT+RESTORE—Restores the Factory Default Settings

Note
When the command is capitalized, it can be used to force restart.

When system is in a "busy" state, user can call "AT+RST" to force restart. The
system will prompt message "will force to restart!!!" before restarts.

Execute Command AT+GMR

Response

<AT	version	info>

<SDK	version	info>

<compile	time>

OK

Parameters
• <AT	version	info>:	information about the AT version.

• <SDK	version	info>:	information about the SDK version.

• <compile	time>: the duration of time for compiling the BIN.

Set Command AT+GSLP=<time>

Response
<time>

OK

Parameters
<time>: the duration of ESP32's sleep. Unit: ms.

ESP32 will wake up after Deep-sleep for as many milliseconds (ms) as <time>
indicates.

Execute Command ATE

Response OK

Parameters
• ATE0: Switches echo off.

• ATE1: Switches echo on.

Execute Command AT+RESTORE

Response OK

Espressif ! /!5 97 2019.06

!

3. Basic AT Commands

3.2.7. AT+UART_CUR—Current UART Configuration, Not Saved in Flash

Note
The execution of this command will reset all parameters saved in flash, and
restore the factory default settings of the module. The chip will be restarted when
this command is executed.

Command
Query Command:

AT+UART_CUR?

Set Command:

AT+UART_CUR=<baudrate>,<databits>,<stop
bits>,<parity>,<flow	control>

Response

+UART_CUR:<baudrate>,<databits>,<stopbi
ts>,<parity>,<flow	control>

OK

Command AT+UART_CUR? will return the
actual value of UART configuration
parameters, which may have allowable errors
compared with the set value because of the
clock division.

OK

Parameters

• <baudrate>: UART baud rate

• <databits>: data bits

‣ 5: 5-bit data
‣ 6: 6-bit data
‣ 7: 7-bit data
‣ 8: 8-bit data

• <stopbits>: stop bits

‣ 1: 1-bit stop bit
‣ 2: 1.5-bit stop bit
‣ 3: 2-bit stop bit

• <parity>: parity bit

‣ 0: None
‣ 1: Odd
‣ 2: Even

• <flow	control>: flow control

‣ 0: flow control is not enabled
‣ 1: enable RTS
‣ 2: enable CTS
‣ 3: enable both RTS and CTS

Notes

1. The configuration changes will NOT be saved in flash.

2. The use of flow control requires the support of hardware:
‣ IO15 is UART0 CTS
‣ IO14 is UART0 RTS

3. The range of baud rates supported: 80 ~ 5000000.

Example AT+UART_CUR=115200,8,1,0,3

Espressif ! /!6 97 2019.06

!

3. Basic AT Commands

3.2.8. AT+UART_DEF—Default UART Configuration, Saved in Flash

Command

Query Command:

AT+UART_DEF?

Function:

Read the UART configuration from flash.

Set Command:

AT+UART_DEF=<baudrate>,<databits>,<stop
bits>,<parity>,<flow	control>

Response
+UART_DEF:<baudrate>,<databits>,<stopbi
ts>,<parity>,<flow	control>

OK

OK

Parameters

• <baudrate>: UART baud rate
• <databits>: data bits

‣ 5: 5-bit data
‣ 6: 6-bit data
‣ 7: 7-bit data
‣ 8: 8-bit data

• <stopbits>: stop bits

‣ 1: 1-bit stop bit
‣ 2: 1.5-bit stop bit
‣ 3: 2-bit stop bit

• <parity>: parity bit

‣ 0: None
‣ 1: Odd
‣ 2: Even

• <flow	control>: flow control

‣ 0: flow control is not enabled
‣ 1: enable RTS
‣ 2: enable CTS
‣ 3: enable both RTS and CTS

Notes

1. The configuration changes will be saved in the NVS area, and will still be valid when the
chip is powered on again.

2. The use of flow control requires the support of hardware:
‣ IO15 is UART0 CTS
‣ IO14 is UART0 RTS

3. The range of baud rates supported: 80 ~ 5000000.

Example AT+UART_DEF=115200,8,1,0,3

Espressif ! /!7 97 2019.06

!

3. Basic AT Commands

3.2.9. AT+SLEEP—Sets the Sleep Mode

3.2.10. AT+SYSRAM—Checks the Remaining Space of RAM

3.2.11. AT+SYSFLASH—Set User Partitions in Flash *

Set Command AT+SLEEP=<sleep	mode>

Response OK

Parameters
<sleep	mode>:

‣ 0: disable the sleep mode.
‣ 1: Modem-sleep mode.

Example AT+SLEEP=0

Query Command AT+SYSRAM?

Response
+SYSRAM:<remaining	RAM	size>

OK

Parameters <remaining	RAM	size>: remaining space of RAM, unit: byte

Example
AT+SYSRAM?

+SYSRAM:148408

OK

Command

Query Command:

AT+SYSFLASH?

Function:

Check the user partitions in flash.

Set Command:

AT+SYSFLASH=<operation>,<partition>,<of
fset>,<length>

Response
+SYSFLASH:<partition>,<type>,<subtype>,
<addr>,<size>

OK

+SYSFLASH:<length>,<data>

OK

Parameters

<partition>: name of user partition

<type>: type of user partition

<subtype>: subtype of user partition

<addr>: address of user partition

<size>: size of user partition

<operation>:

‣ 0: erase sector
‣ 1: write data into the user partition
‣ 2: read data from the user partition

<partition>: name of user partition

<offset>: offset of user partition

<length>: data length

Espressif ! /!8 97 2019.06

!

3. Basic AT Commands

3.2.12. AT+FS—Filesystem Operations *

Notes

• at_customize.bin has to be downloaded, so that the relevant commands can be used. For
more details about at_customize.bin please refer to the ESP32_Customize_Partitions.

• Important things to note when erasing user partitions:

‣ When erasing the targeted user partition in its entirety, parameters <offset> and
<length> can be omitted. For example, command AT+SYSFLASH=0,"ble_data" can
erase the entire "ble_data" user partition.

‣ If parameters <offset> and <length> are not omitted when erasing the user partition,
they have to be 4KB-aligned.

• The introduction to partitions is in ESP-IDF Partition Tables.

Example

// read 100 bytes from the "ble_data" partition offset 0.
AT+SYSFLASH=2,"ble_data",0,100

// write 10 bytes to the "ble_data" partition offset 100.

AT+SYSFLASH=1,"ble_data",100,10

// erase 8192 bytes from the "ble_data" partition offset 4096.

AT+SYSFLASH=0,"ble_data",4096,8192

Command
Set Command:

AT+FS=<type>,<operation>,<filename>,<offset>,<length>

Response OK

Parameters

<type>: only FATFS is currently supported

‣ 0: FATFS

<operation>:

‣ 0: delete file
‣ 1: write file
‣ 2: read file
‣ 3: query the size of the file
‣ 4: list files in a specific directory, only root directory is currently supported

<offset>: offset, for writing and reading operations only

<length>: data length, for writing and reading operations only

Notes

• This function is disabled by default. User needs to set configuration by "make
menuconfig" to enable it, and re-compile the ESP32 AT firmware.

• at_customize.bin has to be downloaded, so that the relevant commands can be used.
The definitions of user partitions are in esp32-at/at_customize.csv. Please refer to the
ESP32_Customize_Partitions for more details.

Espressif ! /!9 97 2019.06

https://github.com/espressif/esp32-at/blob/master/at_customize.csv
https://github.com/espressif/esp32-at/blob/master/docs/ESP32_Customize_Partitions.md
https://github.com/espressif/esp32-at/blob/master/docs/ESP32_Customize_Partitions.md
http://esp-idf.readthedocs.io/en/latest/api-guides/partition-tables.html

!

3. Basic AT Commands

Example

// delete a file.

AT+FS=0,0,"filename"

// write 10 bytes to offset 100 of a file.

AT+FS=0,1,"filename",100,10

// read 100 bytes from offset 0 of a file.

AT+FS=0,2,"filename",0,100

// list all files in the root directory.

AT+FS=0,4,"."

Espressif ! /!10 97 2019.06

!

3. Basic AT Commands

3.2.13. AT+RFPOWER—Set RF TX Power *

Command
Set Command:

AT+RFPOWER=<wifi_power>[,<ble_adv_power>,<ble_scan_power>,<ble_conn_power>]

Response OK

Parameters

<wifi_power>: range [0, 11]

‣ 0:level 0. Refer to the 44th byte of phy_init_data.bin, the default value is 19.5 dBm
‣ 1:level 1. Refer to the 45th byte of phy_init_data.bin, the default value is 19 dBm
‣ 2:level 2. Refer to the 46th byte of phy_init_data.bin, the default value is 18.5 dBm
‣ 3:level 3. Refer to the 47th byte of phy_init_data.bin, the default value is 17 dBm
‣ 4:level 4. Refer to the 48th byte of phy_init_data.bin, the default value is 15 dBm
‣ 5:level 5. Refer to the 49th byte of phy_init_data.bin, the default value is 13 dBm
‣ 6:level 5 - 2 dBm. For example, if level 5 is 13 dBm, level 6 will be 11 dBm
‣ 7:level 5 - 4.5 dBm
‣ 8:level 5 - 6 dBm
‣ 9:level 5 - 8 dBm
‣ 10:level 5 - 11 dBm
‣ 11:level 5 - 14 dBm

<ble_adv_power>:	RF TX Power of BLE advertising, range: [0, 7]

‣ 0:7dBm
‣ 1:4dBm
‣ 2:1dBm
‣ 3:-2 dBm
‣ 4:-5 dBm
‣ 5:-8 dBm
‣ 6:-11 dBm
‣ 7:-14 dBm

<ble_scan_power>: RF TX Power of BLE scanning, range: [0, 7], the same as
<ble_adv_power>

<ble_conn_power>: RF TX Power of BLE connecting, range: [0, 7], the same as
<ble_adv_power>

Notes

• The RF TX power may not be very precise, it is normal that the actual RF TX power is
different from the setting value.

• The last three parameters,[<ble_adv_power>,<ble_scan_power>,<ble_conn_power>],
should be set or be omitted altogether.

Example
AT+RFPOWER=0

Or

AT+RFPOWER=0,0,0,0

Espressif ! /!11 97 2019.06

!

4. Wi-Fi AT Commands

4. Wi-Fi AT Commands
4.1. Overview

4.2. Commands
4.2.1. AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)

Commands Description

AT+CWMODE Sets the Wi-Fi mode (STA/AP/STA+AP).

AT+CWJAP Connects to an AP.

AT+CWLAPOPT Sets the configuration of command AT+CWLAP.

AT+CWLAP Lists available APs.

AT+CWQAP Disconnects from the AP.

AT+CWSAP Sets the configuration of the ESP32 SoftAP.

AT+CWLIF Gets the Station IP to which the ESP32 SoftAP is connected.

AT+CWDHCP Enables/disables DHCP.

AT+CWDHCPS
Sets the IP range of the ESP32 SoftAP DHCP server.

Saves the setting in flash.

AT+CWAUTOCONN Connects to the AP automatically on power-up.

AT+CWSTARTSMART Starts SmartConfig.

AT+CWSTOPSMART Stops SmartConfig.

AT+WPS Enables the WPS function.

AT+CWHOSTNAME Configure the host name of ESP32 station.

AT+MDNS MDNS function

Comman
ds

Test Command:

AT+CWMODE=?

Query Command:

AT+CWMODE?

Function: to query the Wi-Fi
mode of ESP32.

Set Command:

AT+CWMODE=<mode>

Function: to set the Wi-Fi mode
of ESP32.

Response
+CWMODE:<mode>

OK

+CWMODE:<mode>

OK
OK

Espressif ! /!12 97 2019.06

!

4. Wi-Fi AT Commands

Paramete
rs

<mode>:

‣ 0: Null mode, Wi-Fi RF will be disabled *
‣ 1: Station mode
‣ 2: SoftAP mode
‣ 3: SoftAP+Station mode

Note The configuration changes will be saved in the NVS area.

Example AT+CWMODE=3

Espressif ! /!13 97 2019.06

!

4. Wi-Fi AT Commands

4.2.2. AT+CWJAP—Connects to an AP

Commands

Query Command:

AT+CWJAP?

Function: to query the AP to which the
ESP32 Station is already connected.

Set Command:

AT+CWJAP=<ssid>,<pwd>[,<bssid>]

Function: to set the AP to which the ESP32
Station needs to be connected.

Response
+CWJAP:<ssid>,<bssid>,<channel>,<rss
i>

OK

OK

or

+CWJAP:<error	code>

ERROR

Parameters

• <ssid>:	a string parameter showing
the SSID of the AP.

• <bssid>: the AP's MAC address.
• <channel>: channel
• <rssi>: signal strength

• <ssid>: the SSID of the target AP.
• <pwd>: password, MAX: 64-byte ASCII.
• [<bssid>](optional parameter): the target

AP's MAC address, used when multiple APs
have the same SSID.

• <error	code>: (for reference only)
‣ 1: connection timeout.
‣ 2: wrong password.
‣ 3: cannot find the target AP.
‣ 4: connection failed.
‣ others: unknown error occurred.

Escape character syntax is needed if SSID or
password contains any special characters, such
as, or " or \.

Messages

// If ESP32 station connects to an AP, it will prompt messages:

WIFI CONNECTED

WIFI GOT IP

// If the WiFi connection ends, it will prompt messages:

WIFI DISCONNECT

Note
• The configuration changes will be saved in the NVS area.

• This command requires Station mode to be active.

Examples

AT+CWJAP="abc","0123456789"

For example, if the target AP's SSID is "ab\,c" and the password is "0123456789"\", the
command is	as follows:

AT+CWJAP="ab\\\,c","0123456789\"\\"

If multiple APs have the same SSID as "abc", the target AP can be found by BSSID:

AT+CWJAP="abc","0123456789","ca:d7:19:d8:a6:44"

Espressif ! /!14 97 2019.06

!

4. Wi-Fi AT Commands

4.2.3. AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP

Set Command AT+CWLAPOPT=<sort_enable>,<mask>

Response OK

Parameters

• <sort_enable>: determines whether the result of command AT+CWLAP will be listed
according to RSSI:

‣ 0: the result is not ordered according to RSSI.
‣ 1: the result is ordered according to RSSI.

• <mask>: determines the parameters shown in the result of AT+CWLAP; 0 means not
showing the parameter corresponding to the bit, and 1 means showing it.

‣ bit	0: determines whether <ecn> will be shown in the result of AT+CWLAP.
‣ bit	1: determines whether <ssid> will be shown in the result of AT+CWLAP.
‣ bit	2: determines whether <rssi> will be shown in the result of AT+CWLAP.
‣ bit	3: determines whether <mac> will be shown in the result of AT+CWLAP.
‣ bit	4: determines whether <channel> will be shown in the result of AT+CWLAP.

Example

AT+CWLAPOPT=1,31

The first parameter is 1, meaning that the result of the command AT+CWLAP will be ordered
according to RSSI;

The second parameter is 31, namely 0x1F, meaning that the corresponding bits of <mask>
are set to 1. All parameters will be shown in the result of AT+CWLAP.

Espressif ! /!15 97 2019.06

!

4. Wi-Fi AT Commands

4.2.4. AT+CWLAP—Lists the Available APs

4.2.5. AT+CWQAP—Disconnects from the AP

Commands

Set Command:

AT+CWLAP=<ssid>[,<mac>,<channel>]

Function: to query the APs with specific SSID
and MAC on a specific channel.

Execute Command:

AT+CWLAP

Function: to list all available APs.

Response
+CWLAP:<ecn>,<ssid>,<rssi>,<mac>,<chann
el>

OK

+CWLAP:<ecn>,<ssid>,<rssi>,<mac>,<chann
el>

OK

Parameters

• <ecn>: encryption method.

‣ 0: OPEN
‣ 1: WEP
‣ 2: WPA_PSK
‣ 3: WPA2_PSK
‣ 4: WPA_WPA2_PSK
‣ 5: WPA2_Enterprise (AT can NOT connect to WPA2_Enterprise AP for now.)

• <ssid>: string parameter, SSID of the AP.
• <rssi>: signal strength.
• <mac>: string parameter, MAC address of the AP.

Examples

AT+CWLAP="Wi-Fi","ca:d7:19:d8:a6:44",6

or search for APs with a designated SSID:

AT+CWLAP="Wi-Fi"

Execute Command AT+CWQAP

Response OK

Parameters -

Espressif ! /!16 97 2019.06

!

4. Wi-Fi AT Commands

4.2.6. AT+CWSAP—Configuration of the ESP32 SoftAP

Commands

Query Command:

AT+CWSAP?

Function: to obtain the configuration parameters of
the ESP32 SoftAP.

Set Command:

AT+CWSAP=<ssid>,<pwd>,<chl>,<ecn>[
,<max	conn>][,<ssid	hidden>]

Function: to set the configuration of the
ESP32 SoftAP.

Response
+CWSAP:<ssid>,<pwd>,<channel>,<ecn>,<max	
conn>,<ssid	hidden>

OK

OK

Parameters

• <ssid>: string parameter, SSID of AP.
• <pwd>: string parameter, length of password: 8

~ 64 bytes ASCII.
• <channel>: channel ID.
• <ecn>: encryption method; WEP is not

supported.

‣ 0: OPEN
‣ 2: WPA_PSK
‣ 3: WPA2_PSK
‣ 4: WPA_WPA2_PSK

• [<max	conn>](optional parameter): maximum
number of Stations to which ESP32 SoftAP can
be connected; within the range of [1, 10].

• [<ssid	hidden>](optional parameter):

‣ 0: SSID is broadcast. (the default setting)
‣ 1: SSID is not broadcast.

The same as above.

⚠ Notice:

This command is only available when
SoftAP is active.

Note The configuration changes will be saved in the NVS area.

Example AT+CWSAP="ESP32","1234567890",5,3

Espressif ! /!17 97 2019.06

!

4. Wi-Fi AT Commands

4.2.7. AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected

4.2.8. AT+CWDHCP—Enables/Disables DHCP

Execute
Command AT+CWLIF

Response
+CWLIF:<ip	addr>,<mac>

OK

Parameters
• <ip	addr>: IP address of Stations to which ESP32 SoftAP is connected.
• <mac>: MAC address of Stations to which ESP32 SoftAP is connected.

Note This command cannot get a static IP. It only works when both DHCPs of the ESP32
SoftAP, and of the Station to which ESP32 is connected, are enabled.

Commands
Query Command:

AT+CWDHCP?

Set Command:

AT+CWDHCP=<operate>,<mode>

Function: to enable/disable DHCP.

Response
+CWDHCP:<enable>

OK
OK

Parameters

<enable>: DHCP disabled or enabled now?

• Bit0:

‣ 0: Station DHCP is disabled.
‣ 1: Station DHCP is enabled.

• Bit1:

‣ 0: SoftAP DHCP is disabled.
‣ 1: SoftAP DHCP is enabled.

• <operate>:

‣ 0: disable
‣ 1: enable

• <mode>:

‣ Bit0: Station DHCP
‣ Bit1: SoftAP DHCP

Notes

• The configuration changes will be stored in the NVS area.

• This set command interacts with static-IP-related AT commands (AT+CIPSTA-related	
and AT+CIPAP-related commands):

‣ If DHCP is enabled, static IP will be disabled;
‣ If static IP is enabled, DHCP will be disabled;
‣ Whether it is DHCP or static IP that is enabled depends on the last configuration.

Examples

AT+CWDHCP=1,1

Enable Station DHCP. If the last DHCP mode is 2, then the current DHCP mode will be 3.

AT+CWDHCP=0,2

Disable SoftAP DHCP. If the last DHCP mode is 3, then the current DHCP mode will be 1.

Espressif ! /!18 97 2019.06

!

4. Wi-Fi AT Commands

4.2.9. AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The
configuration is saved in Flash.)

4.2.10. AT+CWAUTOCONN—Auto-Connects to the AP or Not

Command
s

Query Command:

AT+CWDHCPS?

Set Command:

AT+CWDHCPS=<enable>,<lease	time>,<start	IP>,<end	
IP>

Function: sets the IP address range of the ESP32
SoftAP DHCP server.

Response
+CWDHCPS:<lease	time>,<start	
IP>,<end	IP>

OK

OK

Parameter
s

• <enable>:

‣ 0: Disable the settings and use the default IP range.
‣ 1: Enable setting the IP range, and the parameters below have to be set.

• <lease	time>: lease time, unit: minute, range [1, 2880].

• <start	IP>: start IP of the IP range that can be obtained from ESP32 SoftAP DHCP server.

• <end	IP>: end IP of the IP range that can be obtained from ESP32 SoftAP DHCP server.

Notes

• The configuration changes will be saved in the NVS area.

• This AT command can only be called when ESP32 runs as SoftAP, and when DHCP is
enabled. The IP address should be in the same network segment as the IP address of
ESP32 SoftAP.

Examples

AT+CWDHCPS=1,3,"192.168.4.10","192.168.4.15"

or

AT+CWDHCPS=0	//Disable	the	settings	and	use	the	default	IP	range.

Set Command AT+CWAUTOCONN=<enable>

Response OK

Parameters

<enable>:

‣ 0: does NOT auto-connect to AP on power-up.
‣ 1: connects to AP automatically on power-up.

The ESP32 Station connects to the AP automatically on power-up by default.

Note The configuration changes will be saved in the NVS area.

Example AT+CWAUTOCONN=1

Espressif ! /!19 97 2019.06

!

4. Wi-Fi AT Commands

4.2.11. AT+CWSTARTSMART—Starts SmartConfig

4.2.12. AT+CWSTOPSMART—Stops SmartConfig

Commands

Set Command:

AT+CWSTARTSMART=<type>

Function: to start SmartConfig of a
designated type.

Set Command:

AT+CWSTARTSMART

Function: enable ESP-TOUCH+AirKiss
SmartConfig.

Response OK OK

Parameters

<type>:

‣ 1: ESP-TOUCH
‣ 2: AirKiss
‣ 3: ESP-TOUCH+AirKiss

none

Messages

When smartconfig starts, it will prompt messages as below:

smartconfig type: <type> // AIRKISS, ESPTOUCH or UNKNOWN

Smart get wifi info 					 // got SSID and password

ssid:<AP's SSID>

password:<AP's password>

// ESP32 will try to connect to the AP

WIFI CONNECTED

WIFI GOT IP

smartconfig connected wifi // if the connection failed, it will prompt "smartconfig connect
fail"

Notes

• For details on SmartConfig please see ESP-TOUCH User Guide.

• SmartConfig is only available in the ESP32 Station mode.

• The message Smart	get	wifi	info means that SmartConfig has successfully acquired
the AP information. ESP32 will try to connect to the target AP.

• Message smartconfig	connected	wifi is printed if the connection is successful.

• Use command AT+CWSTOPSMART to stop SmartConfig before running other commands.
Please make sure that you do not execute other commands during SmartConfig.

Example
AT+CWMODE=1

AT+CWSTARTSMART=3

Execute
Command AT+CWSTOPSMART

Response OK

Parameters -

Note
Irrespective of whether SmartConfig succeeds or not, before executing any other AT
commands, please always call AT+CWSTOPSMART to release the internal memory taken up
by SmartConfig.

Example AT+CWSTOPSMART

Espressif ! /!20 97 2019.06

https://www.espressif.com/sites/default/files/documentation/esp-touch_user_guide_en.pdf

!

4. Wi-Fi AT Commands

4.2.13. AT+WPS—Enables the WPS Function

4.2.14. AT+CWHOSTNAME—Configures the Host Name of ESP32 Station *

4.2.15. AT+MDNS—Configures the MDNS Function *

Set Command AT+WPS=<enable>

Response
OK

or

ERROR

Parameters

<enable>:

‣ 1: enable WPS/Wi-Fi Protected Setup (implemented by PBC/Push Button
Configuration).

‣ 0: disable WPS (implemented by PBC).

Notes
• WPS must be used when the ESP32 Station is enabled.
• WPS does not support WEP/Wired-Equivalent Privacy encryption.

Example
AT+CWMODE=1

AT+WPS=1

Commands

Query Command:

AT+CWHOSTNAME?

Function: Checks the host name of ESP32
Station.

Set Command:

AT+CWHOSTNAME=<hostname>

Function: Sets the host name of ESP32
Station.

Response

+CWHOSTNAME:<host	name>

OK

If the station mode is not enabled, the
command will return:

+CWHOSTNAME:<null>

OK

OK

If the station mode is not enabled, the
command will return:

ERROR

Parameters <hostname>: the host name of the ESP32 Station, maximum length: 32 bytes

Notes
• The configuration changes are not saved in the flash.

• The default host name of the ESP32 Station is ESP_XXXXXX; XXXXXX is the lower 3 bytes
of the MAC address, for example, +CWHOSTNAME:<ESP_A378DA>.

Example
AT+CWMODE=3

AT+CWHOSTNAME="my_test"

Set Command AT+MDNS=<enable>[,<hostname>,<service_name>,<port>]

Response OK

Espressif ! /!21 97 2019.06

!

4. Wi-Fi AT Commands

Parameters

• <enable>:

‣ 1: enables the MDNS function; the following three parameters need to be set.

‣ 0: disables the MDNS function; the following three parameters need not to be set.

• <hostname>: MDNS host name

• <service_name>: MDNS service name, it should start with "_"

• <port>: MDNS port

Notes • Please do not use other special characters (such as	.) for <hostname> and
<service_name>.

Example
AT+MDNS=1,"espressif","_iot",8080

Or

AT+MDNS=0

Espressif ! /!22 97 2019.06

!

5. TCP/IP-Related AT Commands

5. TCP/IP-Related AT Commands
5.1. Overview

Commands Description

AT+CIPSTATUS Gets the connection status.

AT+CIPDOMAIN DNS function.

AT+CIPDNS Sets user-defined DNS server.

AT+CIPSTAMAC Sets the MAC address of ESP32 Station.

AT+CIPAPMAC Sets the MAC address of ESP32 SoftAP.

AT+CIPSTA Sets the IP address of ESP32 Station.

AT+CIPAP Sets the IP address of ESP32 SoftAP.

AT+CIPSTART Establishes TCP connection, UDP transmission or SSL connection.

AT+CIPSSLCCONF Sets configuration of SSL client

AT+CIPSEND Sends data.

AT+CIPSENDEX
Sends data when length of data is <length>, or when \0 appears in the
data.

AT+CIPCLOSE Closes TCP/UDP/SSL connection.

AT+CIFSR Gets the local IP address.

AT+CIPMUX Configures the multiple connections mode.

AT+CIPSERVER Deletes/Creates TCP or SSL server.

AT+CIPSERVERMAXCONN Set the maximum connections that server allows

AT+CIPMODE Configures the transmission mode.

AT+SAVETRANSLINK Saves the transparent transmission link in flash.

AT+CIPSTO Sets timeout when ESP32 runs as a TCP server.

AT+CIUPDATE Updates the software through Wi-Fi.

AT+CIPDINFO Shows remote IP and remote port with +IPD.

AT+CIPSNTPCFG Configures the time domain and SNTP server.

AT+CIPSNTPTIME Queries the SNTP time.

AT+PING Ping packets

Espressif ! /!23 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2. Commands
5.2.1. AT+CIPSTATUS—Gets the Connection Status

5.2.2. AT+CIPDOMAIN—DNS Function

5.2.3. AT+CIPDNS—Sets User-defined DNS Servers; Configuration Saved in the Flash

Execute
Command AT+CIPSTATUS

Response
STATUS:<stat>

+CIPSTATUS:<link	ID>,<type>,<remote	IP>,<remote	port>,<local	
port>,<tetype>

Parameters

• <stat>: status of the ESP32 Station interface.

‣ 2: The ESP32 Station is connected to an AP and its IP is obtained.
‣ 3: The ESP32 Station has created a TCP or UDP transmission.
‣ 4: The TCP or UDP transmission of ESP32 Station is disconnected.
‣ 5: The ESP32 Station does NOT connect to an AP.

• <link	ID>: ID of the connection (0~4), used for multiple connections.

• <type>: string parameter, "TCP" or "UDP".

• <remote	IP>: string parameter indicating the remote IP address.

• <remote	port>: the remote port number.

• <local	port>: ESP32 local port number.

• <tetype>:

‣ 0: ESP32 runs as a client.
‣ 1: ESP32 runs as a server.

Execute
Command AT+CIPDOMAIN=<domain	name>

Response +CIPDOMAIN:<IP	address>

Parameter <domain	name>: the domain name.

Example
AT+CWMODE=1																							//	set	Station	mode

AT+CWJAP="SSID","password"								//	access	to	the	internet

AT+CIPDOMAIN="iot.espressif.cn"			//	DNS	function

Command
s

Query Command:

AT+CIPDNS?

Function: Get the user-defined DNS
servers which saved in flash.

Set Command:

AT+CIPDNS=<enable>[,<DNS	server0>,<DNS	server1>]

Function: Set user-defined DNS servers.

Response

+CIPDNS:<DNS	server0>

[+CIPDNS:<DNS	server1>]

OK

OK

Espressif ! /!24 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.4. AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station

5.2.5. AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP

Parameter
s

• <enable>:	

‣ 0: disable to use a user-defined DNS server;

‣ 1: enable to use a user-defined DNS server.

• <DNS	server0>: optional parameter indicating the first DNS server;

• <DNS	server1>: optional parameter indicating the second DNS serve.

Example AT+CIPDNS=1,"208.67.220.220"

Note

• This configuration will be saved in flash.

• For command: AT+CIPDNS=0 (disable to use user-defined DNS servers), "208.67.222.222"
will be used as DNS server by default. And the DNS server may change according to the
configuration of the router which the chip connected to.

• For command: AT+CIPDNS=1 (enable to use user-defined DNS servers, but the <DNS
server> parameters are not set), servers "208.67.222.222"	will be used as DNS server by
default.

• If users set two DNS servers with this command, please note that these two DNS servers
should not be the same.

Commands

Query Command:

AT+CIPSTAMAC?

Function: to obtain the MAC address of
the ESP32 Station.

Set Command:

AT+CIPSTAMAC=<mac>

Function: to set the MAC address of the ESP32
Station.

Response
+CIPSTAMAC:<mac>

OK
OK

Parameters <mac>: string parameter, MAC address of the ESP Station.

Notes

• The configuration changes will be saved in the NVS area.

• The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please
make sure that you do not set the same MAC address for both of them.

• Bit 0 of the ESP32 MAC address CANNOT be 1. For example, a MAC address can be "1a:
…" but not "15:…".

• FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example AT+CIPSTAMAC="1a:fe:35:98:d3:7b"

Commands

Query Command:

AT+CIPAPMAC?

Function: to obtain the MAC address of the
ESP32 SoftAP.

Set Command:

AT+CIPAPMAC=<mac>

Function: to set the MAC address of the
ESP32 SoftAP.

Response
+CIPAPMAC:<mac>

OK
OK

Espressif ! /!25 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.6. AT+CIPSTA—Sets the IP Address of the ESP32 Station

5.2.7. AT+CIPAP—Sets the IP Address of the ESP32 SoftAP

Parameters <mac>: string parameter, MAC address of ESP32 SoftAP.

Notes

• The configuration changes will be saved in the NVS area.
• The MAC address of ESP32 SoftAP is different from that of the ESP32 Station. Please

make sure you do not set the same MAC address for both of them.
• Bit 0 of the ESP32 MAC address CANNOT be 1. For example, a MAC address can be "18:

…" but not "15:…".
• FF:FF:FF:FF:FF:FF and 00:00:00:00:00:00 are invalid MAC and cannot be set.

Example AT+CIPAPMAC="18:fe:36:97:d5:7b"

Commands

Query Command:

AT+CIPSTA?

Function: to obtain the IP address of the
ESP32 Station.

Set Command:

AT+CIPSTA=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the
ESP32 Station.

Response
+CIPSTA:<ip>

OK
OK

Parameters
⚠ Notice:

Only when the ESP32 Station is connected to
an AP can its IP address be queried.

• <ip>: string parameter, the IP address of
the ESP32 Station.

• [<gateway>]: gateway.

• [<netmask>]: netmask.

Notes

• The configuration changes will be saved in the NVS area.

• The set command interacts with DHCP-related AT commands (AT+CWDHCP-related	
commands):

‣ If static IP is enabled, DHCP will be disabled;
‣ If DHCP is enabled, static IP will be disabled;
‣ Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example AT+CIPSTA="192.168.6.100","192.168.6.1","255.255.255.0"

Commands

Query Command:

AT+CIPAP?

Function: to obtain the IP address of the
ESP32 SoftAP.

Set Command:

AT+CIPAP=<ip>[,<gateway>,<netmask>]

Function: to set the IP address of the ESP32
SoftAP.

Response
+CIPAP:<ip>,<gateway>,<netmask>

OK
OK

Parameters

• <ip>: string parameter, the IP address of the ESP32 SoftAP.

• [<gateway>]: gateway.

• [<netmask>]: netmask.

Espressif ! /!26 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.8. AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL
Connection

Notes

• The configuration changes will be saved in the NVS area.

• Currently, ESP32 only supports class C IP addresses.

• The set command interacts with DHCP-related AT commands (AT+CWDHCP-related	
commands):

‣ If static IP is enabled, DHCP will be disabled;
‣ If DHCP is enabled, static IP will be disabled;
‣ Whether it is DHCP or static IP that is enabled depends on the last configuration.

Example AT+CIPAP="192.168.5.1","192.168.5.1","255.255.255.0"

Establish TCP Connection

Set
Command

Single TCP connection (AT+CIPMUX=0):

AT+CIPSTART=<type>,<remote	IP>,<remote	
port>[,<TCP	keep	alive>]

Multiple TCP Connections (AT+CIPMUX=1):

AT+CIPSTART=<link	ID>,<type>,<remote	
IP>,<remote	port>[,<TCP	keep	alive>]

Response OK

Parameters

• <link	ID>: ID of network connection (0~4), used for multiple connections.

• <type>: string parameter indicating the connection type: "TCP", "UDP"	or "SSL".

• <remote	IP>: string parameter indicating the remote IP address.

• <remote	port>: remote port number.

• [<TCP	keep	alive>] (optional parameter): detection time interval when TCP is kept alive.
This function is disabled by default. Users are recommended to enable this function when
establishing a TCP connection.

‣ 0: disable TCP keep-alive.
‣ 1	~	7200: detection time interval, unit: second(s).

Messages

// If the TCP connection is established, a message appears as below:

[<link ID>,] CONNECT

// If the TCP connection ends, a message appears as below:

[<link ID>,] CLOSED

Note Users are recommended to enable this function when establishing a TCP connection.

Examples
AT+CIPSTART="TCP","iot.espressif.cn",8000

AT+CIPSTART="TCP","192.168.101.110",1000

For more information please see Chapter 9: AT Command Examples.

Establish UDP Transmission

Set
Command

Single connection (AT+CIPMUX=0):

AT+CIPSTART=<type>,<remote	IP>,<remote	
port>[,<UDP	local	port>,<UDP	mode>]

Multiple connections (AT+CIPMUX=1):

AT+CIPSTART=<link	ID>,<type>,<remote	
IP>,<remote	port>[,<UDP	local	
port>,<UDP	mode>]

Espressif ! /!27 97 2019.06

!

5. TCP/IP-Related AT Commands

Response OK

Parameters

• <link	ID>: ID of network connection (0~4), used for multiple connections.
• <type>: string parameter indicating the connection type: "TCP", "UDP"	or "SSL".
• <remote	IP>: string parameter indicating the remote IP address.
• <remote	port>: remote port number.
• [<UDP	local	port>]: optional. It is the UDP port of ESP32.
• [<UDP	mode>] (optional parameter): the entity of UDP transmission. For UDP transparent

transmission, the value of this parameter has to be 0.

‣ 0: the destination peer entity of UDP will not change; this is the default setting.
‣ 1: the destination peer entity of UDP will change once.
‣ 2: the destination peer entity of UDP is allowed to change.

⚠ Notice:

To use <UDP	mode> , <UDP	local	port> must be set first.

Messages

// If the UDP transmission is established, a message appears as below

[<link ID>,] CONNECT

// If the UDP transmission ends, a message appears as below

[<link ID>,] CLOSED

Example
AT+CIPSTART="UDP","192.168.101.110",1000,1002,2

For more information please see Chapter 9: AT Command Examples.

Establish SSL Connection

Set
Command AT+CIPSTART=[<link	ID>,]<type>,<remote	IP>,<remote	port>[,<TCP	keep	alive>]

Response OK

Parameters

• <link	ID>: ID of network connection (0~4), used for multiple connections.
• <type>: string parameter indicating the connection type: "TCP", "UDP"	or "SSL".
• <remote	IP>: string parameter indicating the remote IP address.
• <remote	port>: the remote port number.
• [<TCP	keep	alive>] (optional parameter): detection time interval when TCP is kept alive.

This function is disabled by default. Users are recommended to enable this function when
establishing a TCP

‣ 0: disable the TCP keep-alive function.
‣ 1	~	7200: detection time interval, unit: second (s).

Messages

// If the SSL connection is established, a message appears as below

[<link ID>,] CONNECT

// If the SSL connection ends, a message appears as below

[<link ID>,] CLOSED

Espressif ! /!28 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.9. AT+CIPSSLCCONF—Set Configuration of SSL Client *

Notes
• SSL connection needs much memory. Lack of available memory may cause system

reboot.

• Users are recommended to enable this function when establishing a TCP connection.

Example AT+CIPSTART="SSL","iot.espressif.cn",8443

Set
Command

1. For single connection: (AT+CIPMUX=0)
AT+CIPSSLCCONF=<type>,<cert_key_ID>,<CA_ID>

2. For multiple connections: (AT+CIPMUX=1)
AT+CIPSSLCCONF=<link	ID>,<type>,<cert_key_ID>,<CA_ID>

Response OK

Parameters

• [<link_id>]: ID of the connection (0~4) for multiple connections. If it is omitted in multi-
connections mode, then the configuration will take effect on all connections.

• <type>:

‣ 0: no authentication
‣ 1: loading cert and private key for the authentication server may request
‣ 2: loading CA to authenticate server
‣ 3: bi-directional authentication, both SSL server and client will authenticate certificate of

each other

• <cert_key_ID>: The ID of the certificate, starting from 0. ESP32 AT supports multiple
certificates. On how to generate the bin file, please refer to PKI Bin in esp32-at/tools/
readme.md.

• <CA_ID>: The CA ID that starts from 0. ESP32 AT supports multiple certificates. On how to
generate the bin file, please refer to PKI Bin in esp32-at/tools/readme.md.

Note

• Please call this command before establishing the SSL connection, if it is needed.

• This configuration will be saved in the NVS area of flash. And if a SSL connection is saved
in flash by command AT+SAVETRANSLINK, the SSL connection will be established
according to this configuration in next start-up.

Example
AT+CIPMUX=1	// enable multiple connections

AT+CIPSSLCCONF=1,3,0,0	// to set the NO.1 link, loading certificates (with ID 0) for
authentication.

Espressif ! /!29 97 2019.06

https://github.com/espressif/esp32-at/tree/master/tools
https://github.com/espressif/esp32-at/blob/master/tools/README.md
https://github.com/espressif/esp32-at/tree/master/tools
https://github.com/espressif/esp32-at/blob/master/tools/README.md

!

5. TCP/IP-Related AT Commands

5.2.10. AT+CIPSEND—Sends Data

Commands

Set Command:

1. For single connection: (AT+CIPMUX=0)
AT+CIPSEND=<length>

2. For multiple connections: (AT+CIPMUX=1)

AT+CIPSEND=<link	ID>,<length>

3. Remote IP and ports can be set in UDP
transmission:

AT+CIPSEND=[<link	ID>,]<length>	
[,<remote	IP>,<remote	port>]

Function: to configure the data length in normal
transmission mode.

Execute Command:

AT+CIPSEND

Function: to start sending data in
transparent transmission mode.

Response

Send data of designated length.

Wrap return > after the set command. Begin
receiving serial data. When the requirement of
data length is met, the transmission of data
starts.

If the connection cannot be established or gets
disrupted during data transmission, the system
returns:

ERROR

If data is transmitted successfully, the system
returns:

SEND	OK

Otherwise, the system returns:

SEND	FAIL

Wrap return > after executing this
command.

After entering the transparent transmission,
the data will be sent every 2048 bytes or
every 20ms.

When a single packet containing +++ is
received, ESP32 returns to normal
command mode. Please wait for at least
one second before sending the next AT
command.

This command can only be used in
transparent transmission mode which
requires single connection.

For UDP transparent transmission, the value
of <UDP	mode>	has to be 0 when using
AT+CIPSTART.

Parameters

• <link	ID>: ID of the connection (0~4), for
multiple connections.

• <length>: data length, MAX: 2048 bytes.

• [<remote	IP>]: remote IP can be set in
UDP transmission.

• [<remote	port>]: remote port can be set in
UDP transmission.

-

Example For more information please see Chapter 9: AT Command Examples.

Espressif ! /!30 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.11. AT+CIPSENDEX—Sends Data

5.2.12. AT+CIPCLOSE—Closes TCP/UDP/SSL Connection

Commands

Set Command:

1. Single connection: (+CIPMUX=0)

AT+CIPSENDEX=<length>

2. Multiple connections: (+CIPMUX=1)

AT+CIPSENDEX=<link	ID>,<length>

3. Remote IP and ports can be set in UDP transmission:

AT+CIPSENDEX=[<link	ID>,]<length>[,<remote	IP>,<remote	port>]

Function: to configure the data length in normal transmission mode.

Response

Send data of designated length.

Wrap return > after the set command. Begin receiving serial data. When the requirement of
data length, determined by <length>, is met, or when \0	appears in the data, the
transmission starts.

If connection cannot be established or gets disconnected during transmission, the system
returns:

ERROR

If data are successfully transmitted, the system returns:

SEND	OK

Otherwise, the system returns:

SEND	FAIL

Parameters

• <link	ID>: ID of the connection (0~4), for multiple connections.

• <length>: data length, MAX: 2048 bytes.

• When the requirement of data length, determined by <length>, is met, or when \0
appears, the transmission of data starts. Go back to the normal command mode and wait
for the next AT command.

• When sending \0, please send it as \\0.

Commands
Set Command (for multiple connections):

AT+CIPCLOSE=<link	ID>

Function: to close TCP/UDP connection.

Execute Command (for single
connection):

AT+CIPCLOSE

Response OK

Parameters <link	ID>: ID number of connections to be closed; when
ID=5, all connections will be closed. -

Messages
// When connection ends, it will prompt message as below

[<link ID>,] CLOSED

Espressif ! /!31 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.13. AT+CIFSR—Gets the Local IP Address

5.2.14. AT+CIPMUX—Enables/Disables Multiple Connections

Execute
Command AT+CIFSR

Response

+CIFSR:APIP,<SoftAP	IP	address>

+CIFSR:APMAC,<SoftAP	MAC	address>

+CIFSR:STAIP,<Station	IP	address>

+CIFSR:STAMAC,<Station	MAC	address>

OK

Parameters

<IP	address>:

IP address of the ESP32 SoftAP;

IP address of the ESP32 Station.

<MAC	address>:

MAC address of the ESP32 SoftAP;

MAC address of the ESP32 Station.

Notes Only when the ESP32 Station is connected to an AP can the Station IP be queried.

Commands
Query Command:

AT+CIPMUX?

Set Command:

AT+CIPMUX=<mode>

Function: to set the connection type.

Response
+CIPMUX:<mode>

OK
OK

Parameters
<mode>:

‣ 0: single connection
‣ 1: multiple connections

Notes

• The default mode is single connection mode.

• Multiple connections can only be set when transparent transmission is disabled
(AT+CIPMODE=0).

• This mode can only be changed after all connections are disconnected.

• If the TCP server is running, it must be deleted (AT+CIPSERVER=0) before the single
connection mode is activated.

Example AT+CIPMUX=1

Espressif ! /!32 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.15. AT+CIPSERVER—Deletes/Creates TCP or SSL Server *

5.2.16. AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server *

Command

Query Command:

AT+CIPSERVER?

Function: to obtain information about the server
mode.

Set Command:

AT+CIPSERVER=<mode>[,<port>]
[,<SSL>,<SSL	CA	enable>]

Function: to set a TCP or SSL server.

Response
+CIPSERVER:<mode>,<port>,<SSL>,<SSL	CA	
enable>

OK

OK

Parameters

<mode>:

‣ 0: delete server.
‣ 1: create server.

<port> (optional parameter): port number; 333 by default.

[<SSL>] (optional parameter): string "SSL", to set an SSL server

[<SSL	CA	enable>] (optional parameter):

‣ 0: disable CA.
‣ 1: enable CA.

Notes

• A server can only be created when multiple connections are activated (AT+CIPMUX=1).

• Only one server is allowed to be created.

• A server monitor will be automatically created when the server is created.

• Connecting of a client to the ESP server will take up one connection. The connection will be
assigned an ID.

Messages

// If a connection is established, a message appears as below:

[<link ID>,] CONNECT

// If a connection ends, a message appears as below:

[<link ID>,] CLOSED

Example

• To create a TCP server:
AT+CIPMUX=1

AT+CIPSERVER=1,80

• To create an SSL server:
AT+CIPMUX=1

AT+CIPSERVER=1,443,"SSL",1

Commands

Query Command:

AT+CIPSERVERMAXCONN?

Function: obtain the maximum number of
clients allowed to connect to the TCP or SSL
server.

Set Command:

AT+CIPSERVERMAXCONN=<num>

Function: set the maximum number of clients
allowed to connect to the TCP or SSL server.

Espressif ! /!33 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.17. AT+CIPMODE—Configures the Transmission Mode

Response
+CIPSERVERMAXCONN:<num>

OK
OK

Parameters <num>: the maximum number of clients allowed to connect to the TCP or SSL server, range:
[1, 5]

Notes To set this configuration, you should call the command AT+CIPSERVERMAXCONN=<num>	before
creating a server.

Example
AT+CIPMUX=1

AT+CIPSERVERMAXCONN=2

AT+CIPSERVER=1,80

Commands

Query Command:

AT+CIPMODE?

Function: to obtain information about
transmission mode.

Set Command:

AT+CIPMODE=<mode>

Function: to set the transmission mode.

Response
+CIPMODE:<mode>

OK
OK

Parameters

<mode>:

‣ 0: normal transmission mode.
‣ 1: UART-Wi-Fi passthrough mode (transparent transmission), which can only be enabled

in TCP/SSL single connection mode or in UDP mode when the remote IP and port do
not change.

Notes

• The configuration changes will NOT be saved in flash.

• During the UART-Wi-Fi passthrough transmission, if the TCP connection breaks, ESP32 will
keep trying to reconnect until +++ is input to exit the transmission. If it is a normal TCP
transmission and the TCP connection breaks, ESP32 will give a prompt and will not attempt
to reconnect.

• The UART-Wi-Fi passthrough mode and the BLE commands cannot be used together, so
before enabling UART-WiFi passthrough mode, please ensure that the BLE commands are
not enabled (AT+BLEINIT=0).

Example AT+CIPMODE=1

Espressif ! /!34 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.18. AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash

Save TCP Single Connection in Flash

Set
Command

AT+SAVETRANSLINK=<mode>,<remote	IP	or	domain	name>,<remote	port>[,<type>,<TCP	
keep	alive>]

Response OK

Parameters

• <mode>:

‣ 0: normal mode, ESP32 will NOT enter UART-Wi-Fi passthrough mode on power-up.
‣ 1: ESP32 will enter UART-Wi-Fi passthrough mode on power-up.

• <remote	IP>: remote IP or domain name.

• <remote	port>: remote port.

• [<type>]	(optional): TCP, SSL or UDP,	TCP	by default.
• [<TCP	keep	alive>]	(optional): TCP is kept alive. This function is disabled by default.

‣ 0: disables the TCP keep-alive function.
‣ 1	~	7200: keep-alive detection time interval, unit: second (s).

Notes

• This command will save the UART-Wi-Fi passthrough mode and its link in the NVS area.
ESP32 will enter the UART-Wi-Fi passthrough mode on any subsequent power cycles.

• As long as the remote IP (or domain name) and port are valid, the configuration will be
saved in flash.

Example AT+SAVETRANSLINK=1,"192.168.6.110",1002,"TCP"

Save UDP Transmission in Flash

Set
Command AT+SAVETRANSLINK=<mode>,<remote	IP>,<remote	port>,<type>[,<UDP	local	port>]

Response OK

Parameters

• <mode>:

‣ 0: normal mode; ESP32 will NOT enter UART-Wi-Fi passthrough mode on power-up.
‣ 1: ESP32 enters UART-Wi-Fi passthrough mode on power-up.

• <remote	IP>: remote IP or domain name.

• <remote	port>: remote port.

• [<type>]	(optional): UDP, TCP	by default.
• [<UDP	local	port>] (optional): local port when UDP transparent transmission is

enabled on power-up.

Notes

• This command will save the UART-Wi-Fi passthrough mode and its link in the NVS area.
ESP32 will enter the UART-Wi-Fi passthrough mode on any subsequent power cycles.

• As long as the remote IP (or domain name) and port are valid, the configuration will be
saved in flash.

Example AT+SAVETRANSLINK=1,"192.168.6.110",1002,"UDP",1005

Espressif ! /!35 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.19. AT+CIPSTO—Sets the TCP Server Timeout

Save SSL Single Connection in Flash

Set
Command

AT+SAVETRANSLINK=<mode>,<remote	IP	or	domain	name>,<remote	port>[,<type>,<TCP	
keep	alive>]

Response OK

Parameters

• <mode>:

‣ 0: normal mode, ESP32 will NOT enter UART-Wi-Fi passthrough mode on power-up.
‣ 1: ESP32 will enter UART-Wi-Fi passthrough mode on power-up.

• <remote	IP>: remote IP or domain name.

• <remote	port>: remote port.

• [<type>]	(optional): SSL,	TCP	by default.
• [<TCP	keep	alive>]	(optional): TCP is kept alive. This function is disabled by default.

‣ 0: disables the TCP keep-alive function.
‣ 1	~	7200: keep-alive detection time interval, unit: second (s).

Notes

• This command will save the UART-Wi-Fi passthrough mode and its link in the NVS area.
ESP32 will enter the UART-Wi-Fi passthrough mode on any subsequent power cycles.

• As long as the remote IP (or domain name) and port are valid, the configuration will be
saved in flash.

Example AT+SAVETRANSLINK=1,"192.168.6.110",443,"SSL"

Commands

Query Command:

AT+CIPSTO?

Function: to check the TCP server
timeout.

Set Command:

AT+CIPSTO=<time>

Function: to set the TCP server timeout.

Response
+CIPSTO:<time>

OK
OK

Parameter <time>: TCP server timeout within the range of 0 ~ 7200s.

Notes

• ESP32 configured as a TCP server will disconnect from the TCP client that does not
communicate with it until timeout.

• If AT+CIPSTO=0, the connection will never time out. This configuration is not
recommended.

Example
AT+CIPMUX=1

AT+CIPSERVER=1,1001

AT+CIPSTO=10

Espressif ! /!36 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.20. AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server

5.2.21. AT+CIPSNTPTIME—Queries the SNTP Time

5.2.22. AT+CIUPDATE—Updates the Software Through Wi-Fi

Command
s

Query Command:

AT+CIPSNTPCFG?

Set Command:

AT+CIPSNTPCFG=<enable>[,<timezone>][,<SNTP	
server0>,<SNTP	server1>,<SNTP	server2>]

Response

+CIPSNTPCFG:<enable>,<timezone>,<SN
TP	server1>[,<SNTP	server2>,<SNTP	
server3>]

OK

OK

Parameter
s

• <enable>:	

‣ 0: SNTP is disabled;

‣ 1: SNTP is enabled.

• <timezone>: time zone; range: [-11,13]; if SNTP is enabled, the <timezone> has to be set;

• <SNTP	server0>: optional parameter indicating the first SNTP server;

• <SNTP	server1>: optional parameter indicating the second SNTP server;

• <SNTP	server2>: optional parameter indicating the third SNTP server.

Example AT+CIPSNTPCFG=1,8,"cn.ntp.org.cn","ntp.sjtu.edu.cn","us.pool.ntp.org"

Note If the <SNTP server> parameters are not set, servers "cn.ntp.org.cn","ntp.sjtu.edu.cn",	
"us.pool.ntp.org" will be used by default.

Query
Command AT+CIPSNTPTIME?

Response
+CIPSNTPTIME:SNTP	time

OK

Parameters -

Example

AT+CIPSNTPCFG=1,8,"cn.ntp.org.cn","ntp.sjtu.edu.cn"

OK

AT+CIPSNTPTIME?

+CIPSNTPTIME:Mon	Dec	12	02:33:32	2016

OK

Command
Execute Command:

AT+CIUPDATE

Function: normal FOTA.

Set Command:

AT+CIUPDATE=<ota_mode>[,<version>]

Function: set FOTA mode and upgrade to a
specific version.

Espressif ! /!37 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.23. AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"

5.2.24. +IPD—Receives Network Data

Response

+CIPUPDATE:<n>

OK

//<n> means the FOTA steps:

‣ 1: find the server.
‣ 2: check software version from server, this step will be skipped if upgrading to a

specific version
‣ 3: get the software version, this step will be skipped if upgrading to a specific version
‣ 4: start updating.

Parameters none

<ota_mode>：

‣ 0：normal FOTA
‣ 1：SSL FOTA

[<version>]：optional parameter, to set a
specific version for upgrading. If it is not set, the
default version will be downloaded for
upgrading.

Notes
• The speed of the upgrade is susceptible to the connectivity of the network.
• ERROR will be returned if the upgrade fails due to unfavourable network conditions.

Please wait for some time before retrying.

Notice

• If using Espressif's AT BIN (/esp-idf/bin/at), AT+CIUPDATE will download a new AT BIN
from the Espressif Cloud.

• If using a user-compiled AT BIN, users need to make their own AT+CIUPDATE upgrade.
Espressif provides a demo as a reference for local upgrade (/esp-idf/example/at).

• User can enable SSL OTA in the menuconfig, more details are in the Chapter OTA
Function.

• It is suggested that users call AT+RESTORE to restore the factory default settings after
upgrading the AT firmware.

Set Command AT+CIPDINFO=<mode>

Response OK

Parameters
<mode>:

‣ 0: does not show the remote IP and port with "+IPD".
‣ 1: shows the remote IP and port with "+IPD".

Example AT+CIPDINFO=1

Command
Single connection:

(+CIPMUX=0)+IPD,<len>[,<remote	
IP>,<remote	port>]:<data>

multiple connections:

(+CIPMUX=1)+IPD,<link	ID>,<len>[,<remote	
IP>,<remote	port>]:<data>

Espressif ! /!38 97 2019.06

!

5. TCP/IP-Related AT Commands

5.2.25. AT+PING—Ping Packets

Parameters

The command is valid in normal command mode. When the module receives network
data, it will send the data through the serial port using the +IPD command.

• [<remote	IP>]: remote IP, enabled by command AT+CIPDINFO=1.

• [<remote	port>]: remote port, enabled by command AT+CIPDINFO=1.

• <link	ID>: ID number of connection.

• <len>: data length.

• <data>: data received.

Set Command
AT+PING=<IP>

Function: Ping packets.

Response

+PING:<time>

OK

or

+PING:TIMEOUT

ERROR

Parameters
• <IP>: string; host IP or domain name
• <time>: the response time of ping

Notes
AT+PING="192.168.1.1"

AT+PING="www.baidu.com"

Espressif ! /!39 97 2019.06

!

6. BLE-Related AT Commands

6. BLE-Related AT Commands
6.1. Overview

Commands Description

AT+BLEINIT Bluetooth Low Energy (BLE) initialization

AT+BLEADDR Sets BLE device's address

AT+BLENAME Sets BLE device's name

AT+BLESCANPARAM Sets parameters of BLE scanning

AT+BLESCAN Enables BLE scanning

AT+BLESCANRSPDATA Sets BLE scan response

AT+BLEADVPARAM Sets parameters of BLE advertising

AT+BLEADVDATA Sets BLE advertising data

AT+BLEADVSTART Starts BLE advertising

AT+BLEADVSTOP Stops BLE advertising

AT+BLECONN Establishes BLE connection

AT+BLECONNPARAM Updates parameters of BLE connection

AT+BLEDISCONN Ends BLE connection

AT+BLEDATALEN Sets BLE data length

AT+BLECFGMTU Sets BLE MTU length

AT+BLEGATTSSRVCRE Generic Attributes Server (GATTS) creates services

AT+BLEGATTSSRVSTART GATTS starts services

AT+BLEGATTSSRVSTOP GATTS stops services

AT+BLEGATTSSRV GATTS discovers services

AT+BLEGATTSCHAR GATTS discovers characteristics

AT+BLEGATTSNTFY GATTS notifies of characteristics

AT+BLEGATTSIND GATTS indicates characteristics

AT+BLEGATTSSETATTR GATTS sets attributes

AT+BLEGATTCPRIMSRV Generic Attributes Client (GATTC) discovers primary services

AT+BLEGATTCINCLSRV GATTC discovers included services

Commands

Espressif ! /!40 97 2019.06

!

6. BLE-Related AT Commands

AT+BLEGATTCCHAR GATTC discovers characteristics

AT+BLEGATTCRD GATTC reads characteristics

AT+BLEGATTCWR GATTC writes characteristics

AT+BLESPPCFG Configures BLE SPP (Serial Port Profile)

AT+BLESPP Enables BLE SPP

AT+BLESECPARAM Sets Parameters of BLE SMP (Security Manager Specification)

AT+BLEENC Starts a Pairing Request

AT+BLEENCRSP Sets a Pairing Response

AT+BLEKEYREPLY Reply to a Pairing Key

AT+BLECONFREPLY Reply to a Pairing Result

AT+BLEENCDEV Lists All Devices that Bonded

AT+BLEENCCLEAR Unbinds Device

DescriptionCommands

⚠ Notice:
• Download BLE Spec (ESP32 supports Core Version 4.2): https://www.bluetooth.com/specifications/

adopted-specifications

• The BLE commands and the UART-Wi-Fi passthrough mode cannot be used together, so before BLE
initialization, please ensure that the UART-Wi-Fi passthrough mode is not enabled (AT+CIPMODE=0).

Espressif ! /!41 97 2019.06

https://www.bluetooth.com/specifications/adopted-specifications

!

6. BLE-Related AT Commands

6.2. Commands
6.2.1. AT+BLEINIT—BLE Initialization

6.2.2. AT+BLEADDR—Sets BLE Device's Address

Commands

Query Command:

AT+BLEINIT?

Function: to check the initialization status of
BLE.

Set Command:

AT+BLEINIT=<init>

Function: to initialize the role of BLE.

Response

If BLE is not initialized, it will return:

+BLEINIT:0

OK

If BLE is initialized, it will return:

+BLEINIT:<role>

OK

OK

Parameter

<init>:

‣ 0: de-init BLE, disable BLE RF *
‣ 1: client role
‣ 2: server role

Notes

• Before using BLE AT commands, this command has to be called first to trigger the
initialization process.

• After being initialized, the BLE role cannot be changed directly. If the user wants to
change the BLE role, AT+RST or AT+BLEINIT=0 needs to be called first.

• If using ESP32 as a BLE server, a service bin should be downloaded into Flash.

‣ at_customize.bin has to be downloaded, so that the relevant commands can be used.
Please refer to the ESP32_Customize_Partitions for more details.

‣ To learn how to generate a service bin, please refer to esp32-at/tools/readme.md.

‣ The download address of the service bin is the "ble_data" address in esp32-at/
at_customize.csv.

Example AT+BLEINIT=1

Commands
Query Command:

AT+BLEADDR?

Function: to get the BLE public address.

Set Command:

AT+BLEADDR=<addr_type>,<random_addr>

Function: to set the BLE random address.

Response
+BLEADDR:<BLE_public_addr>

OK
OK

Parameter
<addr_type>:

‣ 0: public address
‣ 1: random address

Espressif ! /!42 97 2019.06

https://github.com/espressif/esp32-at/blob/master/docs/ESP32_Customize_Partitions.md
https://github.com/espressif/esp32-at/blob/master/tools/README.md
https://github.com/espressif/esp32-at/blob/master/at_customize.csv

!

6. BLE-Related AT Commands

6.2.3. AT+BLENAME—Sets BLE Device's Name

6.2.4. AT+BLESCANPARAM—Sets Parameters of BLE Scanning

Notes

• For the time being, only two actions are supported: getting the public address and
setting the BLE random address.

• The two most significant bits of the random address shall be equal to 1. More details are
in the BLE spec.

Example AT+BLEADDR=1,"f8:7f:24:87:1c:f7"

Commands
Query Command:

AT+BLENAME?

Function: to get the BLE device name.

Set Command:

AT+BLENAME=<device_name>

Function: to set the BLE device name.

Response
+BLENAME:<device_name>

OK
OK

Parameter <device_name>: the BLE device name

Notes

• The default BLE device name is "BLE_AT".

• This configuration sets the device name characteristic of GAP service, it is the device
name we can get after BLE connection is established, more details are in BLE core v4.2
vol.3 part C 12.1.

• If user wants to set the device name while advertising, it is the command
AT+BLEADVDATA that should be used.

Example AT+BLENAME="esp_demo"

Commands

Query Command:

AT+BLESCANPARAM?

Function: to get the parameters of BLE
scanning.

Set Command:

AT+BLESCANPARAM=<scan_type>,<own_addr_ty
pe>,	
<filter_policy>,<scan_interval>,<scan_wi
ndow>

Function: to set the parameters of BLE
scanning.

Response

+BLESCANPARAM:<scan_type>,<own_addr_t
ype>,<filter_policy>,<scan_interval>,
<scan_	window>

OK

OK

Espressif ! /!43 97 2019.06

!

6. BLE-Related AT Commands

6.2.5. AT+BLESCAN—Enables BLE Scanning

Parameters

<scan_type>:

‣ 0: passive scan
‣ 1: active scan

<own_addr_type>:

‣ 0: public address
‣ 1: random address
‣ 2: RPA public address
‣ 3: RPA random address

<filter_policy>:

‣ 0: BLE_SCAN_FILTER_ALLOW_ALL
‣ 1: BLE_SCAN_FILTER_ALLOW_ONLY_WLST
‣ 2: BLE_SCAN_FILTER_ALLOW_UND_RPA_DIR
‣ 3: BLE_SCAN_FILTER_ALLOW_WLIST_PRA_DIR

<scan_interval>: scan interval

<scan_window>: scan window

Notes <scan_window> CANNOT be larger than <scan_interval>

Example
AT+BLEINIT=1			// role: client

AT+BLESCANPARAM=0,0,0,100,50	

Commands
Set Command:

AT+BLESCAN=<enable>[,<interval>]

Function: to enable/disable scanning.

Response
+BLESCAN:<addr>,<rssi>,<adv_data>,<scan_rsp_data>,<addr_type>

OK

Espressif ! /!44 97 2019.06

!

6. BLE-Related AT Commands

6.2.6. AT+BLESCANRSPDATA—Sets BLE Scan Response

Parameters

<enable>:

‣ 0: disable scanning
‣ 1: enable scanning

[<interval>]: optional parameter, unit: second

‣ When disabling the scanning, this parameter should be omitted
‣ When enabling the scanning,

- if the <interval> is 0 or omitted, it means that scanning is continuous
- if the <interval> is NOT 0, for example, command AT+BLESCAN=1,3 , it means

that scanning should last for 3 seconds and then stop automatically, so that the
scanning results be returned.

<addr>: BLE address

<rssi>: signal strength

<adv_data>: advertising data

<scan_rsp_data>: scan response data

<addr_type>：BLE address type

‣ 0: public address
‣ 1: random address
‣ 2: RPA (Resolvable Private Address) public
‣ 3: RPA (Resolvable Private Address) random

Example

AT+BLEINIT=1			// role: client

AT+BLESCAN=1	 // start scanning

AT+BLESCAN=0 // stop scanning

Commands
Set Command:

AT+BLESCANRSPDATA=<scan_rsp_data>

Function: to set scan response.

Response OK

Parameter
<scan_rsp_data>: scan response data is a HEX string. For example, to set the response
data as "0x11 0x22 0x33 0x44 0x55", the command should be
AT+BLESCANRSPDATA="1122334455".

Note The maximum length of the scan response is 31 bytes.

Example
AT+BLEINIT=2			// role: server

AT+BLESCANRSPDATA="1122334455"

Espressif ! /!45 97 2019.06

!

6. BLE-Related AT Commands

6.2.7. AT+BLEADVPARAM—Sets Parameters of Advertising

Commands

Query Command:

AT+BLEADVPARAM?

Function: to query the parameters of
advertising.

Set Command:

AT+BLEADVPARAM=<adv_int_min>,<adv_int_max
>,	
<adv_type>,<own_addr_type>,<channel_map>	
[,<adv_filter_policy>,<peer_addr_type>,<p
eer_addr>]

Function: to set the parameters of advertising.

Response

+BLEADVPARAM:<adv_int_min>,<adv_int_
max>,<adv_type>,<own_addr_type>,<cha
nnel_map>,<adv_filter_policy>,<peer_
addr_type>,<peer_addr>

OK

OK

Parameters

<adv_int_min>:	minimum value of advertising interval; range: 0x0020 ~ 0x4000

<adv_int_max>:	maximum value of advertising interval; range: 0x0020 ~ 0x4000

<adv_type>:

‣ 0: ADV_TYPE_IND
‣ 1: ADV_TYPE_DIRECT_IND_HIGH

‣ 2: ADV_TYPE_SCAN_IND

‣ 3: ADV_TYPE_NONCONN_IND

<own_addr_type>: own BLE address type

‣ 0: BLE_ADDR_TYPE_PUBLIC

‣ 1: BLE_ADDR_TYPE_RANDOM

<channel_map>: channel of advertising

‣ 1: ADV_CHNL_37

‣ 2: ADV_CHNL_38

‣ 4: ADV_CHNL_39

‣ 7: ADV_CHNL_ALL

[<adv_filter_policy>](optional parameter): filter policy of advertising

‣ 0: ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY

‣ 1: ADV_FILTER_ALLOW_SCAN_WLST_CON_ANY

‣ 2: ADV_FILTER_ALLOW_SCAN_ANY_CON_WLST

‣ 3: ADV_FILTER_ALLOW_SCAN_WLST_CON_WLST

[<peer_addr_type>](optional parameter): remote BLE address type

‣ 0: PUBLIC

‣ 1: RANDOM

[<peer_addr>](optional parameter): remote BLE address

Note <adv_filter_policy>,<peer_addr_type>,<peer_addr> these three parameters should be
set together, or be omitted together.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVPARAM=50,50,0,0,4,0,0,"12:34:45:78:66:88"

Espressif ! /!46 97 2019.06

!

6. BLE-Related AT Commands

6.2.8. AT+BLEADVDATA—Sets Advertising Data

6.2.9. AT+BLEADVSTART—Starts Advertising

6.2.10. AT+BLEADVSTOP—Stops Advertising

Commands
Set Command:

AT+BLEADVDATA=<adv_data>

Function: to set advertising data.

Response OK

Parameters <adv_data>: advertising data; this is a HEX string. For example, to set the advertising data
as "0x11 0x22 0x33 0x44 0x55", the command should be AT+BLEADVDATA="1122334455".

Note The maximum length of the advertising data is 31 bytes.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVDATA="1122334455"

Commands
Execute Command:

AT+BLEADVSTART

Function: to start advertising.

Response OK

Parameter None

Notes

• If advertising parameters are NOT set by command AT+BLEADVPARAM=<adv_parameter>,
the default parameters will be used.

• If advertising data is NOT set by command AT+BLEADVDATA=<adv_data>, the all zeros
data will be sent.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVSTART

Commands
Execute Command:

AT+BLEADVSTOP

Function: to stop advertising.

Response OK

Parameter None

Notes After having started advertising, if the BLE connection is established successfully, it will stop
advertising automatically. In such a case, this command does NOT need to be called.

Example
AT+BLEINIT=2			// role: server

AT+BLEADVSTART

AT+BLEADVSTOP

Espressif ! /!47 97 2019.06

!

6. BLE-Related AT Commands

6.2.11. AT+BLECONN—Establishes BLE connection

6.2.12. AT+BLECONNPARAM—Updates parameters of BLE connection

Commands
Query Command:

AT+BLECONN?

Function: to query the BLE connection.

Set Command:

AT+BLECONN=<conn_index>,<remote_address>[
,<addr_type>]

Function: to establish the BLE connection.

Response

+BLECONN:<conn_index>,<remote_addres
s>

OK

If the connection has not been
established, there will NOT be
<conn_index>	and	<remote_address>

OK

If the connection established successfully, it will
prompt message

+BLECONN:<conn_index>,<remote_address>

It will prompt the message below, if NOT:

+BLECONN:<conn_index>,fail

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<remote_address>: remote BLE address

[<addr_type>]: optional parameter, default type is public address

‣ 0: public address
‣ 1: random address
‣ 2: RPA (Resolvable Private Address) public
‣ 3: RPA (Resolvable Private Address) random

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

Commands

Query Command:

AT+BLECONNPARAM?

Function: to query the parameters of BLE
connection.

Set Command:

AT+BLECONNPARAM=<conn_index>,<min_int
erval>,<max_interval>,<latency>,<time
out>

Function: to update the parameters of BLE
connection.

Response
+BLECONNPARAM:<conn_index>,<min_interval>
,<max_interval>,<cur_interval>,<latency>,
<timeout>

OK

OK	// command received

If the setting failed, it will prompt message
below:

+BLECONNPARAM：<conn_index>,-1

Espressif ! /!48 97 2019.06

!

6. BLE-Related AT Commands

6.2.13. AT+BLEDISCONN—Ends BLE connection

6.2.14. AT+BLEDATALEN—Sets BLE Data Packet Length

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<min_interval>: minimum value of connecting interval; range: 0x0006 ~ 0x0C80

<max_interval>: maximum value of connecting interval; range: 0x0006 ~ 0x0C80

<cur_interval>: current connecting interval value

<latency>:	latency; range: 0x0000 ~ 0x01F3

<timeout>: timeout; range: 0x000A ~ 0x0C80

Note This commands supports the client only when updating its connection parameters. Of course,
the connection has to be established first.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLECONNPARAM=0,12,14,1,500

Commands
Execute Command:

AT+BLEDISCONN=<conn_index>

Function: to end a BLE connection.

Response
OK

If the connection ends, it will prompt message

+BLEDISCONN:<conn_index>,<remote_address>

Parameter
<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<remote_address>: remote BLE address

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLEDISCONN=0

Commands
Set Command:

AT+BLEDATALEN=<conn_index>,<pkt_data_len>

Function: to set the length of BLE data packet.

Response OK	

Parameter
<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<pkt_data_len>: data packet's length; range: 0x001b ~ 0x00fb

Notes The BLE connection has to be established before setting the packet length.

Espressif ! /!49 97 2019.06

!

6. BLE-Related AT Commands

6.2.15. AT+BLECFGMTU—Sets GATT MTU Length

6.2.16. AT+BLEGATTSSRVCRE—GATTS Creates Services

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLEDATALEN=0,30

Command
s

Query Command:

AT+BLECFGMTU?

Function: to query the length of the
maximum transmission unit (MTU).

Set Command:

AT+BLECFGMTU=<conn_index>,<mtu_size>

Function: to set the length of the maximum
transmission unit (MTU).

Response
+BLECFGMTU:<conn_index>,<mtu_size>

OK
OK		// the command is received

Parameter
<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<mtu_size>: MTU length

Notes

• Only the client can call this command to set the length of MTU. However, the BLE
connection has to be established first.

• The actual length of MTU needs to be negotiated. The "OK" response only means that the
MTU length must be set. So, the user should use command AT+BLECFGMTU? to query the
actual MTU length.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:0a:c4:09:34:23"

AT+BLECFGMTU=0,300

Commands
Execute Command:

AT+BLEGATTSSRVCRE

Function: The Generic Attributes Server (GATTS) creates BLE services.

Response OK

Parameter None

Notes

• If using ESP32 as a BLE server, a service bin should be downloaded into Flash in order
to provide services.

‣ To learn how to generate a service bin, please refer to esp32-at/tools/readme.md.

‣ The download address of the service bin is the "ble_data" address in esp32-at/
at_customize.csv.

• This command should be called immediately to create services, right after the BLE server
is initialized. If a BLE connection is established first, the service creation will fail.

Example
AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

Espressif ! /!50 97 2019.06

https://github.com/espressif/esp32-at/blob/master/tools/README.md
https://github.com/espressif/esp32-at/blob/master/at_customize.csv

!

6. BLE-Related AT Commands

6.2.17. AT+BLEGATTSSRVSTART—GATTS Starts Services

6.2.18. AT+BLEGATTSSRVSTOP—GATTS Stops Services

6.2.19. AT+BLEGATTSSRV—GATTS Discovers Services

Commands
Execute Command:

AT+BLEGATTSSTART

Function: GATTS starts all services.

Set Command:

AT+BLEGATTSSRVSTART=<srv_index>

Function: GATTS starts a specific service.

Response OK

Parameter None <srv_index>: service's index starting from 1

Example
AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

Commands
Execute Command:

AT+BLEGATTSSTOP

Function: GATTS stops all services.

Set Command:

AT+BLEGATTSSRVSTOP=<srv_index>

Function: GATTS stops a specific service.

Response OK

Parameter None <srv_index>: service's index starting from 1

Example

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSSRVSTOP

Commands
Query Command:

AT+BLEGATTSSRV?

Function: GATTS services discovery.

Response
+BLEGATTSSRV:<srv_index>,<start>,<srv_uuid>,<srv_type>

OK

Parameters

<srv_index>:	service's index starting from 1

<start>:

‣ 0: the service has not started

‣ 1: the service has already started

<srv_uuid>:	service's UUID

<srv_type>:	service's type

‣ 0: is not a primary service

‣ 1: is a primary service

Espressif ! /!51 97 2019.06

!

6. BLE-Related AT Commands

6.2.20. AT+BLEGATTSCHAR—GATTS Discovers Characteristics

6.2.21. AT+BLEGATTSNTFY—GATTS Notifies of Characteristics

Example
AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRV?

Command
s

Query Command:

AT+BLEGATTSCHAR?

Function: GATTS characteristics discovery.

Response

// when showing a characteristic, it will be as:

+BLEGATTSCHAR:"char",<srv_index>,<char_index>,<char_uuid>,<char_prop>

// when showing a descriptor, it will be as:

+BLEGATTSCHAR:"desc",<srv_index>,<char_index>,<desc_index>

OK

Parameter
s

<srv_index>:	service's index starting from 1

<char_index>:	characteristic's index starting from 1

<char_uuid>:	characteristic's UUID

<char_prop>:	characteristic's properties

<desc_index>:	descriptor's index

<desc_uuid>:	descriptor's UUID

Example

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

Commands
Set Command:

AT+BLEGATTSNTFY=<conn_index>,<srv_index>,<char_index>,<length>

Function: GATTS notifies of its characteristics.

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data
length, determined by <length>, is met, the notification starts.

If the data transmission is successful, the system returns:

OK

Espressif ! /!52 97 2019.06

!

6. BLE-Related AT Commands

6.2.22. AT+BLEGATTSIND—GATTS Indicates Characteristics

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>:	characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

<length>: data length

Example

A simple workflow is shown below. Users can refer to Section 9.5 BLE AT Examples for
more details.

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART	// starts advertising. After the client is connected, it must be configured to
receive notifications.

AT+BLEGATTSCHAR?		// check which characteristic the client will be notified of

// for example, to notify of 4 bytes of data using the 6th characteristic in the 3rd service, use
the following command:

AT+BLEGATTSNTFY=0,3,6,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the data will be transmitted
automatically

Commands
Set Command:

AT+BLEGATTSIND=<conn_index>,<srv_index>,<char_index>,<length>

Function: GATTS indicates its characteristics.

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data
length, determined by <length>, is met, the indication starts.

If the data transmission is successful, the system returns:

OK

Parameters

<conn_index>:	index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>:	characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

<length>: data length

Espressif ! /!53 97 2019.06

!

6. BLE-Related AT Commands

6.2.23. AT+BLEGATTSSETATTR—GATTS Sets Characteristic

Example

A simple workflow is shown below. Users can refer to Section 9.5 BLE AT Examples for
more details.

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEADVSTART	// starts advertising. After the client is connected, it must be configured to
receive indications.

AT+BLEGATTSCHAR?		// check for which characteristic the client can receive indications

// for example, to indicate 4 bytes of data using the 7th characteristic in the 3rd service, use
the following command:

AT+BLEGATTSIND=0,3,7,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the data will be transmitted
automatically

Commands
Set Command:

AT+BLEGATTSSETATTR=<srv_index>,<char_index>[,<desc_index>],<length>

Function: GATTS sets its characteristic (descriptor).

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data
length, determined by <length>, is met, the setting starts.

If the setting is successful, the system returns:

OK

Parameters

<srv_index>:	service's index; it can be fetched with command AT+BLEGATTSCHAR?

<char_index>:	characteristic's index; it can be fetched with command AT+BLEGATTSCHAR?

[<desc_index>](Optional parameter): descriptor's index. If it is set, this command is used to
set the value of the descriptor; if it is not, this command is used to set the value of the
characteristic.

<length>:	data length

Note If the <length> is larger than the maximum length allowed, the setting will fail.

Example

A simple workflow is shown below. Users can refer to Section 9.5 BLE AT Examples for
more details.

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?	

// for example, to set 4 bytes of data of the 1st characteristic in the 1st service, use the
following command:

AT+BLEGATTSSETATTR=1,1,,4

// after > shows, inputs 4 bytes of data, such as "1234"; then, the setting starts

Espressif ! /!54 97 2019.06

!

6. BLE-Related AT Commands

6.2.24. AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services

6.2.25. AT+BLEGATTCINCLSRV—GATTC Discovers Included Services

Commands
Query Command:

AT+BLEGATTCPRIMSRV=<conn_index>

Function: GATTC discovers primary services.

Response
+BLEGATTCPRIMSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index starting from 1

<srv_uuid>:	service's UUID

<srv_type>:	service's type

‣ 0: is not a primary service

‣ 1: is a primary service

Note The BLE connection has to be established first.

Example
AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

Commands
Set Command:

AT+BLEGATTCINCLSRV=<conn_index>,<srv_index>

Function: GATTC discovers included services.

Response
+BLEGATTCINCLSRV:<conn_index>,<srv_index>,<srv_uuid>,<srv_type>,<included_srv_
uuid>,<included_srv_type>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command
AT+BLEGATTCPRIMSRV=<conn_index>

<srv_uuid>:	service's UUID

<srv_type>:	service's type

‣ 0: is not a primary service

‣ 1: is a primary service

<included_srv_uuid>: included service's UUID

<included_srv_type>: included service's type

‣ 0: is not a primary service

‣ 1: is a primary service

Note The BLE connection has to be established first.

Espressif ! /!55 97 2019.06

!

6. BLE-Related AT Commands

6.2.26. AT+BLEGATTCCHAR—GATTC Discovers Characteristics

6.2.27. AT+BLEGATTCRD—GATTC Reads a Characteristic

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCINCLSRV=0,1		// set a specific index according to the result of the previous
command

Commands
Set Command:

AT+BLEGATTCCHAR=<conn_index>,<srv_index>

Function: GATTC discovers characteristics.

Response

// when showing a characteristic, it will be as:

+BLEGATTCCHAR:"char",<conn_index>,<srv_index>,<char_index>,<char_uuid>,<char_p
rop>

// when showing a descriptor, it will be as:

+BLEGATTCCHAR:"desc",<conn_index>,<srv_index>,<char_index>,<desc_index>,<desc_
uuid>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command
AT+BLEGATTCPRIMSRV=<conn_index>

<char_index>:	characteristic's index starting from 1

<char_uuid>:	characteristic's UUID

<char_prop>:	characteristic's properties

<desc_index>:	descriptor's index

<desc_uuid>:	descriptor's UUID

Note The BLE connection has to be established first.

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,1	// set a specific index, according to the result of the previous
command

Commands
Set Command:

AT+BLEGATTCRD=<conn_index>,<srv_index>,<char_index>[,<desc_index>]

Function: GATTC to read a characteristic or descriptor.

Espressif ! /!56 97 2019.06

!

6. BLE-Related AT Commands

6.2.28. AT+BLEGATTCWR—GATTC Writes Characteristic

Response
+BLEGATTCRD:<conn_index>,<len>,<value>

OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command
AT+BLEGATTCPRIMSRV=<conn_index>

<char_index>:	characteristic's index; it can be fetched with command
AT+BLEGATTCCHAR=<conn_index>,<srv_index>

[<desc_index>](Optional parameter): descriptor's index. If it is set, the value of the target
descriptor will be read; if it is not set, the value of the target characteristic will be read.

<len>:	data length

<value>:	HEX string

‣ Characteristic's value, read by command
AT+BLEGATTCRD=<conn_index>,<srv_index>,	<char_index>. For example, if the
response is "+BLEGATTCRD:0,1,30", it means that the value length is 1, and the
content is "0x30".

‣ Descriptor's value, read by command AT+BLEGATTCRD=<conn_index>,<srv_index>,	
<char_index>,<desc_index>. For example, if the response is "+BLEGATTCRD:
0,4,30313233", it means that the value length is 4, and the content is "0x30 0x31
0x32 0x33".

Note
• The BLE connection has to be established first.

• If the target characteristic cannot be read, it will return "ERROR".

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3	// set a specific index, according to the result of the previous
command

// for example, to read 1st descriptor of the 2nd characteristic in the 3rd service, use the
following command:

AT+BLEGATTCRD=0,3,2,1

Commands
Set Command:

AT+BLEGATTCWR=<conn_index>,<srv_index>,<char_index>[,<desc_index>],<length>

Function: GATTC writes characteristics or descriptor.

Response

wrap return > after the command. Begin receiving serial data. When the requirement of data
length, determined by <length>, is met, the writting starts.

If the setting is successful, the system returns:

OK

Espressif ! /!57 97 2019.06

!

6. BLE-Related AT Commands

6.2.29. AT+BLESPPCFG—Configures BLE SPP

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<srv_index>:	service's index; it can be fetched with command
AT+BLEGATTCPRIMSRV=<conn_index>

<char_index>:	characteristic's index; it can be fetched with command
AT+BLEGATTCCHAR=<conn_index>,<srv_index>

[<desc_index>] (optional parameter): descriptor's index. If it is set, the value of the target
descriptor will be written; if it is not set, the value of the target characteristic will be written.

<length>:	data length

Note
• The BLE connection has to be established first.

• If the target characteristic cannot be written, it will return "ERROR".

Example

AT+BLEINIT=1			// role: client

AT+BLECONN=0,"24:12:5f:9d:91:98"

AT+BLEGATTCPRIMSRV=0

AT+BLEGATTCCHAR=0,3	// set a specific index, according to the result of the previous
command

// for example, to write 6 bytes of data to the 4th characteristic in the 3rd service, use the
following command:

AT+BLEGATTCWR=0,3,4,,6	

// after > shows, inputs 6 bytes of data, such as "123456"; then, the writing starts

Set
Command

AT+BLESPPCFG=<cfg_enable>,<tx_srv_index>,<tx_char_index>,<rx_srv_index>,<rx_srv
_index>

Function: to configure BLE SPP (Serial Port Profile, UART-BLE passthrough mode). It will
take two characteristics: one for sending data, the other for receiving data.

Response OK

Espressif ! /!58 97 2019.06

!

6. BLE-Related AT Commands

Parameters

<cfg_enable>:

• 0: clears BLE SPP configuration, the following four parameters need not to be set.

• 1: sets BLE SPP configuration, the following four parameters have to be set.

<tx_srv_index>: the index of the service that contains the target characteristic for sending
data.

• If ESP runs as a BLE server, <tx_srv_index> will be a local service ID which can be
obtained by using the command AT+BLEGATTSSRVCRE.

• If ESP runs as a BLE client, <tx_srv_index> will be a remote service ID which can be
obtained by using the command AT+BLEGATTCPRIMSRV=<conn_index>.

<tx_char_index>: the index of the characteristic that is used for sending data.

• If ESP runs as a BLE server, <tx_char_index> will be a local characteristic ID which
can be obtained by using the command AT+BLEGATTSCHAR. The characteristic should
support notification or indication.

• If ESP runs as a BLE client, <tx_char_index> will be a remote characteristic ID which
can be obtained by using the command
AT+BLEGATTCCHAR=<conn_index>,<srv_index>. The characteristic should support
writing access.

<rx_srv_index>: the index of the service that contains the target characteristic for receiving
data.

• If ESP runs as a BLE server, <rx_srv_index> will be a local service ID which can be
obtained by using the command AT+BLEGATTSSRVCRE.

• If ESP runs as a BLE client, <rx_srv_index> will be a remote service ID which can be
obtained by using the command AT+BLEGATTCPRIMSRV=<conn_index>.

<rx_char_index>: the index of the characteristic that is used for receiving data.

• If ESP runs as a BLE server, <rx_char_index> will be a local characteristic ID which
can be obtained by using the command AT+BLEGATTSCHAR. The characteristic should
support writing access.

• If ESP runs as a BLE client, <rx_char_index> will be a remote characteristic ID which
can be obtained by using the command
AT+BLEGATTCCHAR=<conn_index>,<srv_index>. The characteristic should support
notification or indication.

Note

• This command can be called after initializing BLE.
• This command can be called multiple times, the final configuration depends on the last

setting.
• If the target characteristic cannot be written, it will return "ERROR". This configuration will

not be saved in flash, and will be cleared after system reboot or BLE shutdown.

Espressif ! /!59 97 2019.06

!

6. BLE-Related AT Commands

6.2.30. AT+BLESPP—Enables BLE SPP

Example

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

AT+BLEADVSTART	// start advertising

// After a BLE client connects to the ESP server, the message +BLECONN:0,<client	MAC>
will appear.

// For example, to configure the 7th characteristic in the 1st service as a TX channel for
sending data; and configure the 5th characteristic in the 1st service as a RX channel for
receiving data, use the following command:

AT+BLESPPCFG=1,1,7,1,5

// The client needs to listen to the notification/indication from TX channel which is the 7th
characteristic in this example.

Execute
Command

AT+BLESPP

Function: to enable BLE SPP (Serial Port Profile, UART-BLE passthrough mode).

Response

OK

> // waiting for serial data

The wrap return is > after this command is executed. Then, ESP32 enters UART-BLE
passthrough mode.

When a single packet containing +++ is received, ESP32 returns to normal command mode.
Please wait for at least one second before sending the next AT command.

Note

• When calling this command to enable BLE SPP, the configuration set by AT+BLESPPCFG
will be checked. If the configuration has not been set, cleared, or is invalid (for example,
the characteristic fails to meet requirements), the command will return "ERROR".

• If the UART-WiFi passthrough mode has been enabled, the command will return
"ERROR".

• If the BLE connection is not established, or the multiple connections mode is enabled,
the command will return "ERROR".

• If the BLE is advertising, the command will return "ERROR". However, the command will
be enabled successfully if the advertising type is ADV_TYPE_NONCONN_IND.

• If the BLE connection breaks unexpectedly in UART-BLE passthrough mode, the ESP will
keep trying to restore the connection.

Espressif ! /!60 97 2019.06

!

6. BLE-Related AT Commands

6.2.31. AT+BLESECPARAM—Set Parameters of BLE SMP

Example

AT+BLEINIT=2			// role: server

AT+BLEGATTSSRVCRE

AT+BLEGATTSSRVSTART

AT+BLEGATTSCHAR?

AT+BLEADVSTART	// start advertising

// After a BLE client connects to the ESP server, the message +BLECONN:0,<client	MAC>
will return.

// For example, to configure the 7th characteristic in the 1st service as a TX channel for
sending data; and configure the 5th characteristic in the 1st service as a RX channel for
receiving data, use the following command:

AT+BLESPPCFG=1,1,7,1,5

// The client needs to listen to the notification/indication from TX channel which is the 7th
characteristic in this example.

AT+BLESPP	 // enable BLE SPP

Commands

Query Command:

AT+BLESECPARAM?

Function: to query parameters of BLE SMP
(Security Manager Specification).

Set Command:

AT+BLESECPARAM=<auth_req>,<iocap>,<key_s
ize>,<init_key>,<rsp_key>

Function: to set parameters of BLE SMP.

Response
+BLESECPARAM:<auth_req>,<iocap>,<key_s
ize>,<init_key>,<rsp_key>

OK

OK

Espressif ! /!61 97 2019.06

!

6. BLE-Related AT Commands

6.2.32. AT+BLEENC—Starts a Pairing Request

Parameters

<auth_req>:	authentication requirements

‣ 0:	ESP_LE_AUTH_NO_BOND										

‣ 1:	ESP_LE_AUTH_BOND											

‣ 2:	ESP_LE_AUTH_REQ_MITM																			

‣ 4:	ESP_LE_AUTH_REQ_SC_ONLY															

‣ 5:	ESP_LE_AUTH_REQ_SC_BOND						

‣ 6:	ESP_LE_AUTH_REQ_SC_MITM						

‣ 7:	ESP_LE_AUTH_REQ_SC_MITM_BOND	

<iocap>:	IO capabilities

‣ 0:	ESP_IO_CAP_OUT				 	/*!<	DisplayOnly	*/
‣ 1:	ESP_IO_CAP_IO					 	/*!<	DisplayYesNo	*/ 	

‣ 2:	ESP_IO_CAP_IN					 	/*!<	KeyboardOnly	*/ 	

‣ 3:	ESP_IO_CAP_NONE			 	/*!<	NoInputNoOutput	*/ 	

‣ 4:	ESP_IO_CAP_KBDISP	 	/*!<	Keyboard	display	*/

<key_size>:	encryption key size, range : [7, 16]

<init_key>:

‣ if bit0 is 1, it means	ESP_BLE_ENC_KEY_MASK 	//	exchange	the	encryption	key

‣ if bit1 is 1, it means ESP_BLE_ID_KEY_MASK 	//	exchange	the	IRK	key

‣ if bit2 is 1, it means ESP_BLE_CSR_KEY_MASK 	//	exchange	the	CSRK	key

‣ if bit3 is 1, it means ESP_BLE_LINK_KEY_MASK //	exchange	the	link	key(this	key	

is	used	only	in	the	BLE	&	BR/EDR-coexist	mode)

<rsp_key>:	response key

‣ if bit0 is 1, it means	ESP_BLE_ENC_KEY_MASK 	//	exchange	the	encryption	key

‣ if bit1 is 1, it means ESP_BLE_ID_KEY_MASK 	//	exchange	the	IRK	key

‣ if bit2 is 1, it means ESP_BLE_CSR_KEY_MASK 	//	exchange	the	CSRK	key

‣ if bit3 is 1, it meansESP_BLE_LINK_KEY_MASK //	exchange	the	link	key(this	key	

is	used	only	in	the	BLE	&	BR/EDR-coexist	mode)

Note This configuration should be set before the BLE connection is established.

Example AT+BLESECPARAM=1,4,16,3,3

Commands
Set Command:

AT+BLEENC=<conn_index>,<sec_act>

Function: to start a pairing request.

Response OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<sec_act>:

‣ 0:	ESP_BLE_SEC_NONE				
‣ 1:	ESP_BLE_SEC_ENCRYPT		 	

‣ 2:	ESP_BLE_SEC_ENCRYPT_NO_MITM					 	

‣ 3:	ESP_BLE_SEC_ENCRYPT_MITM		

Example
AT+BLESECPARAM=1,4,16,3,3

AT+BLEENC=0,3

Espressif ! /!62 97 2019.06

!

6. BLE-Related AT Commands

6.2.33. AT+BLEENCRSP—Sets a Pairing Response

6.2.34. AT+BLEKEYREPLY—Reply to a Pairing Key

6.2.35. AT+BLECONFREPLY—Reply to a Pairing Result

Commands
Set Command:

AT+BLEENCRSP=<conn_index>,<accept>

Function: to set a pairing response.

Response OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<accept>:

‣ 0:	reject				
‣ 1:	accept	

Example AT+BLEENCRSP=0,1

Commands
Set Command:

AT+BLEKEYREPLY=<conn_index>,<key>

Function: to reply to a pairing key.

Response OK

Parameters
<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<key>: pairing key

Example AT+BLEKEYREPLY=0,649784

Commands
Set Command:

AT+BLECONFREPLY=<conn_index>,<confirm>

Function: to reply to a pairing result when the pairing key cannot be used.

Response OK

Parameters

<conn_index>: index of BLE connection; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<confirm>:

‣ 0:	No				
‣ 1:	Yes		

Example
// confirm that pairing succeeded

AT+BLECONFREPLY=0,1

Espressif ! /!63 97 2019.06

!

6. BLE-Related AT Commands

6.2.36. AT+BLEENCDEV—Lists All Devices that Bonded

6.2.37. AT+BLEENCCLEAR—Unbind Device

Command
Query Command:

AT+BLEENCDEV?

Response
+BLEENCDEV:<enc_dev_index>,<mac_address>

OK

Parameters
<enc_dev_index>: index of bonded devices; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

<mac_address>: Mac address

Example AT+BLEENCDEV?

Command
s

Set Command:

AT+BLEENCCLEAR=<enc_dev_index>

Function: unbind a device with a specific
index.

Execute Command:

AT+BLEENCCLEAR

Function: unbind all devices.

Response OK

Parameter
s

<enc_dev_index>: index of bonded devices; only 0 is supported for the single connection right
now, but multiple BLE connections will be supported in the future.

Example AT+BLEENCCLEAR

Espressif ! /!64 97 2019.06

!

7. AT Commands with Configuration Saved in the NVS Area

7. AT Commands with
Configuration Saved in the

NVS Area
Commands Examples

AT+UART AT+UART=115200,8,1,0,3

AT+UART_DEF AT+UART_DEF=115200,8,1,0,3

AT+CWDHCP AT+CWDHCP=1,1

AT+CIPSTAMAC AT+CIPSTAMAC="18:fe:35:98:d3:7b"

AT+CIPAPMAC AT+CIPAPMAC="1a:fe:36:97:d5:7b"

AT+CIPSTA AT+CIPSTA="192.168.6.100"

AT+CIPAP AT+CIPAP="192.168.5.1"

AT+CWDHCPS AT+CWDHCPS=1,3,"192.168.4.10","192.168.4.15"

AT+SAVETRANSLINK AT+SAVETRANSLINK=1,"192.168.6.10",1001

AT+CWMODE AT+CWMODE=3

AT+CWJAP AT+CWJAP="abc","0123456789"

AT+CWSAP AT+CWSAP="ESP32","12345678",5,3

AT+CWAUTOCONN AT+CWAUTOCONN=1

AT+CIPSSLCCONF AT+CIPSSLCCONF=1,3,0,0

⚠ Notice:

NVS parameter area is 0xFA000 ~ 0x110000, and it is 88 KB in size.

Espressif ! /!65 97 2019.06

!

8. AT Messages

8. AT Messages
Messages of ESP32 AT are as below:

Messages Description

ready The AT firmware is ready.

ERROR AT command error, or error occurred during execution.

WIFI	CONNECTED ESP station connected to an AP.

WIFI	GOT	IP ESP station got IP address.

WIFI	DISCONNECT ESP station disconnected from an AP.

busy	p...
Busy processing. The system is in process of handling the previous
command, cannot accept the newly input.

<conn_id>,CONNECT A network connection of which ID is <conn_id> is established.

<conn_id>,CLOSED A network connection of which ID is <conn_id> ends.

+IPD Network data received.

+STA_CONNECTED:<sta_mac> A station connects to the ESP softAP.

+DIST_STA_IP:<sta_mac>,<s
ta_ip>

ESP softAP distributes an IP address to the station connected.

+STA_DISCONNECTED:<sta_ma
c>

A station disconnects from the ESP softAP.

+BLECONN A BLE connection established.

+BLEDISCONN A BLE connection ends.

+READ A read operation from BLE connection

+WRITE A write operation from BLE connection

+NOTIFY A notification from BLE connection

+INDICATE An indication from BLE connection

+BLESECNTFYKEY BLE SMP key

+BLEAUTHCMPL BLE SMP pairing completed.

Espressif ! /!66 97 2019.06

!

9. AT Commands Examples

9. AT Commands Examples
Herein we introduce some examples of how to use Espressif's AT Commands.

9.1. ESP32 as a TCP Client in Single Connection
1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect to the router:

AT+CWJAP="SSID","password"															//	SSID	and	password	of	router

Response:

OK

3. Query the device's IP:

AT+CIFSR

Response:

192.168.3.106																												//	device	got	an	IP	from	router

4. Connect the PC to the same router which ESP32 is connected to. Use a network tool
on the PC to create a TCP server.

- For example, the TCP server on PC is 192.168.3.116, port 8080.

5. ESP32 is connected to the TCP server as a client:

AT+CIPSTART="TCP","192.168.3.116",8080			//	protocol、server	IP	&	port

6. Send data:

AT+CIPSEND=4																													//	set	date	length	which	will	be	sent,		such	as	
4	bytes

>TEST																																				//	enter	the	data,	no	CR

Response:

SEND	OK

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND	OK.

Espressif ! /!67 97 2019.06

!

9. AT Commands Examples

7. Receive data:

+IPD,n:xxxxxxxxxx																								//	received	n	bytes,	data=xxxxxxxxxxx

9.2. UDP Transmission
UDP transmission is established via AT+CIPSTART. There is no such distinction between
UDP server and UDP client.

1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect to the router:

AT+CWJAP="SSID","password"															//	SSID	and	password	of	router

Response:

OK

3. Query the device's IP:

AT+CIFSR

Response:

+CIFSR:STAIP,"192.168.101.104"											//	IP	address	of	ESP32	Station

4. Connect the PC to the same router which ESP32 is connected to. Use a network tool
on the PC to create UDP transmission.

- For example, the PC's IP address is 192.168.101.116 and the port is 8080.

5. Below are two examples of UDP transmission:

9.2.1. UDP (with Fixed Remote IP and Port)

In UDP transmission, whether the remote IP and port are fixed or not is determined by the
last parameter of AT+CIPSTART, namely 0. 0 means that the remote IP and port are fixed
and cannot be changed. A specific ID is given to such a connection, ensuring that the data
sender and receiver will not be replaced by other devices.

1. Enable multiple connections:

AT+CIPMUX=1

Response:

OK

2. Create a UDP transmission, with the ID being 4, for example.

AT+CIPSTART=4,"UDP","192.168.101.110",8080,1112,0

Espressif ! /!68 97 2019.06

!

9. AT Commands Examples

Response:

4,CONNECT

OK

3. Send data:

AT+CIPSEND=4,7														//	send	7	bytes	to	transmission	NO.4

>UDPtest																						//	enter	the	data,	no	CR

Response:

SEND	OK

4. Receive data:

+IPD,4,n:xxxxxxxxxx										//	received	n	bytes,	data=xxxxxxxxxxx

5. Close UDP transmission No.4:

AT+CIPCLOSE=4

Response:

4,CLOSED

OK

9.2.2. UDP (with Changeable Remote IP and Port)

1. Create a UDP transmission with the last parameter being 2.

AT+CIPSTART="UDP","192.168.101.110",8080,1112,2

Response:

CONNECT

OK

📖 Notes:

• "192.168.101.110" and 8080 are the remote IP and port of UDP transmission on the remote side, i.e.,
the UDP configuration set by PC.

• 1112 is the local port number of ESP32. Users can define this port number. The value of this parameter
will be random if it is not defined beforehand.

• 0 means that the remote IP and port are fixed and cannot be changed. For example, if another PC also
creates a UDP entity and sends data to ESP32 port 1112, ESP32 can receive the data sent from UDP
port 1112. But when data are sent using AT command AT+CIPSEND=4,X, it will still be sent to the first
PC end. If parameter 0	is not used, the data will be sent to the new PC.

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND	OK.

Espressif ! /!69 97 2019.06

!

9. AT Commands Examples

2. Send data:

AT+CIPSEND=7																			//	send	7	bytes

>UDPtest																							//	enter	the	data,	no	CR

Response:

SEND	OK

3. If you want to send data to any other UDP terminals, please designate the IP and port of
the target terminal in the command.

AT+CIPSEND=6,"192.168.101.111",1000												//	send	six	bytes

>abcdef																																										//	enter	the	data,	no	CR

Response:

SEND	OK

4. Receive data:

+IPD,n:xxxxxxxxxx																																//	received	n	bytes,	data=xxxxxxxxxxx

5. Close UDP transmission:

AT+CIPCLOSE

Response:

CLOSED

OK

9.3. Transparent Transmission
AT Demo supports transparent transmission only when ESP32 works as a TCP client in
single connection or UDP transmission.

📖 Notes:

• "192.168.101.110" and 8080 here refer to the IP and port of the remote UDP transmission terminal
which is created on a PC in Section 9.2.1.

• 1112 is the local port of ESP32. Users can define this port. The value of this parameter will be random
if it is not defined beforehand.

• 2 means the means the opposite terminal of UDP transmission can be changed. The remote IP and
port will be automatically changed to those of the last UDP connection to ESP32.

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND	OK.

Espressif ! /!70 97 2019.06

!

9. AT Commands Examples

9.3.1. ESP32 as a TCP Client in UART-Wi-Fi Passthrough (Single Connection Mode)

Here is an example of the ESP32 Station working as a TCP client in single connection
mode of transparent transmission.

1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect to the router:

AT+CWJAP="SSID","password"															//	SSID	and	password	of	router

Response:

OK

3. Query the device's IP:

AT+CIFSR

Response:

192.168.101.105																										//	device's	IP	that	got	from	router

4. Connect the PC to the same router to which ESP32 is connected. Use a network tool
on the PC to create a TCP server.

- For example, the PC's IP address is 192.168.101.110 and the port is 8080.

5. Connect the device to the TCP server as a TCP client:

AT+CIPSTART="TCP","192.168.101.110",8080					//	protocol,	server	IP	&	port

Response:

OK

6. Enable the transparent transmission mode:

AT+CIPMODE=1

Response:

OK

7. Send data:

AT+CIPSEND

Response:

>																//	From	now	on,	data	received	from	UART	will	be	transparent	transmitted	
to	server

8. Stop sending data:

Espressif ! /!71 97 2019.06

!

9. AT Commands Examples

When receiving a packet that contains only “+++”, the UART-WiFi passthrough
transmission process will be stopped. Then please wait at least 1 second before sending
next AT command.

Please be noted that if you input “+++” directly by typing, the “+++”, may not be
recognised as three consecutive “+” because of the Prolonged time when typing.

9. Exit the transparent transmission mode:

AT+CIPMODE=0

Response:

OK

10.Close the TCP connection:

AT+CIPCLOSE

Response:

CLOSED

OK

9.3.2. UDP Transmission (UART-Wi-Fi PassthroughTransmission)

Here is an example of the ESP32 working as a SoftAP in UDP transparent transmission.

1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Connect the PC to the ESP32 SoftAP:

!

3. Use a network tool on PC to create a UDP.

- For example, the PC's IP address is 192.168.4.2 and the port is 1001.

⚠ Notice:

The aim of ending the packet with +++ is to exit transparent transmission and to accept normal AT
commands, while TCP still remains connected. However, users can also deploy command AT+CIPSEND to
go back into transparent transmission.

Espressif ! /!72 97 2019.06

!

9. AT Commands Examples

4. Create a UDP transmission between ESP32 and the PC with a fixed remote IP and port.

AT+CIPSTART="UDP","192.168.4.2",1001,2233,0

Response:

OK

5. Enable the transparent transmission mode:

AT+CIPMODE=1

Response:

OK

6. Send data:

AT+CIPSEND

Response:

>																	//	from	now	on,	data	received	from	UART	will	be	transparent	
transmitted	to	server

7. Stop sending data:

When receiving a packet that contains only “+++”, the UART-WiFi passthrough
transmission process will be stopped. Then please wait at least 1 second before sending
next AT command.

Please be noted that if you input “+++” directly by typing, the “+++”, may not be
recognized as three consecutive “+” because of the Prolonged time when typing.

9. Exit the transparent transmission mode:

AT+CIPMODE=0

Response:

OK

10.Close the UDP transmission:

AT+CIPCLOSE

Response:

CLOSED

OK

⚠ Notice:

The aim of ending the packet with +++ is to exit transparent transmission and to accept normal AT
commands, while TCP still remains connected. However, users can also use command AT+CIPSEND to go
back into transparent transmission.

Espressif ! /!73 97 2019.06

!

9. AT Commands Examples

9.4. ESP32 as a TCP Server in Multiple Connections
When ESP32 works as a TCP server, multiple connections should be enabled; that is to
say, there should be more than one client connecting to ESP32.

Below is an example showing how a TCP server is established when ESP32 works in the
SoftAP mode. If ESP32 works as a Station, set up a server in the same way after
connecting ESP32 to the router.

1. Set the Wi-Fi mode:

AT+CWMODE=3																														//	SoftAP+Station	mode

Response:

OK

2. Enable multiple connections:

AT+CIPMUX=1

Response:

OK

3. Set up a TCP server:

AT+CIPSERVER=1																											//	default	port	=	333

Response:

OK

4. Connect the PC to the ESP32 SoftAP:

!

5. Using a network tool on PC to create a TCP client and connect to the TCP server that
ESP created.

⚠ Notice:

When ESP32 works as a TCP server, there is a timeout mechanism. If the TCP client is connected to the
ESP32 TCP server, while there is no data transmission for a period of time, the server will disconnect from
the client. To avoid such a problem, please set up a data transmission cycle every two seconds.

Espressif ! /!74 97 2019.06

!

9. AT Commands Examples

6. Send data:

																											//	ID	number	of	connection	is	defaulted	to	be	0

AT+CIPSEND=0,4													//	send	4	bytes	to	connection	NO.0

>TEST																						//	enter	the	data,	no	CR

Response:

SEND	OK

7. Receive data:

+IPD,0,n:xxxxxxxxxx								//	received	n	bytes,	data	=	xxxxxxxxxx

8. Close the TCP connection:

AT+CIPCLOSE=0													//	delete	NO.0	connection

Response:

0,CLOSED

OK

⚠ Notice:

• If the number of bytes inputted are more than the size defined (n):

- the system will reply busy, and send the first n bytes.

- and after sending the first n bytes, the system will reply SEND OK.

Espressif ! /!75 97 2019.06

!

9. AT Commands Examples

9.5. BLE AT Examples
9.5.1. iBeacon Examples

The following demonstrates two examples of iBeacon:

• ESP32 advertising iBeacons, which can be discovered by the “Shake Nearby”
function of WeChat.

• ESP32 scanning iBeacons.

9.5.1.1. ESP32 Device Advertising iBeacons

1. Initialize the role of the ESP32 device as a BLE server:

AT+BLEINIT=2																														//	server	role

Response：

OK

2. Start advertising.

Configure the parameters of the advertisement as Table 9-2 shows:

The AT command should be as below:

AT+BLEADVDATA="0201061aff4c000215fda50693a4e24fb1afcfc6eb0764782527b7f206c5"

Table 9-1. iBeacon Frame

Type Length (byte) Description

iBeacon prefix 9 02 01 06 1A FF 4C 00 02 15

Proximity UUID 16 Used to identify vendor

Major 2 Used to identify store

Minor 2 Used to identify the location of a specific Beacon within a store

TX power 1 Used to calculate the distance between the ESP32 device and the phone

Table 9-2. iBeacon Advertisement Example

Type Content

iBeacon prefix 02 01 06 1A FF 4C 00 02 15

Proximity UUID FDA50693-A4E2-4FB1-AFCF-C6EB07647825

Major 27 B7

Minor F2 06

TX power C5

Espressif ! /!76 97 2019.06

!

9. AT Commands Examples

Response:

OK

Start advertising:

AT+BLEADVSTART

Response:

OK

Open WeChat on your mobile phone and then select “Shake Nearby” to discover the
ESP32 device that is advertising, as shown in Figure 9-1.

!
Figure 9-1. “Shake Nearby” on WeChat

9.5.1.2. ESP32 Device Scanning for iBeacons

Not only can the ESP32 device transmits iBeacons, but it can also work as a BLE client
that scans for iBeacons and gets the advertisement data which can then be parsed by the
host MCU.

1. Initialize the role of the ESP32 device as a BLE client:

AT+BLEINIT=1																														//	client	role

⚠ Notice:

If the ESP32 device has already been initialized as a BLE server, you need to call AT+BLEINIT=0 to de-init
it first, and then re-init it as a BLE client.

Espressif ! /!77 97 2019.06

!

9. AT Commands Examples

Response:

OK

2. Enable a scanning for three seconds:

AT+BLESCAN=1,3

Response:

OK

You will get a scanning result that looks like:

+BLESCAN:
24:0a:c4:02:10:0e,-33,0201061aff4c000215fda50693a4e24fb1afcfc6eb0764782527b7f206c5,

+BLESCAN:24:0a:c4:01:4d:fe,-74,02010207097a4f68664b43020aeb051220004000,

+BLESCAN:
24:0a:c4:02:10:0e,-33,0201061aff4c000215fda50693a4e24fb1afcfc6eb0764782527b7f206c5,

The result shows the advertisement that has been configured in Section 9.5.1.1. Then, the
host MCU can parse the data whose frame is shown in Table 9-1.

9.5.2. BLE Communication Examples

9.5.2.1. Basic Communication

Below is an example of using two ESP32 modules, one as a BLE server (hereafter named
"ESP32 Server") and the other one as a BLE client (hereafter named "ESP32 Client"). The
example shows how to use BLE functions with AT commands.

1. BLE initialization:

• ESP32 Server:

AT+BLEINIT=2																														//	server	role

Response:

OK

- Create services.

AT+BLEGATTSSRVCRE

Response:

OK

- Start services.

AT+BLEGATTSSRVSTART

⚠ Notice:

The ESP32 Server needs to download a "service bin" into Flash to provide BLE services.

• To learn how to generate a "service bin", please refer to esp32-at/tools/readme.md.

• The download address of the "service bin" is the address of "ble_data" in esp32-at/at_customize.csv.

Espressif ! /!78 97 2019.06

https://github.com/espressif/esp32-at/blob/master/tools/README.md
https://github.com/espressif/esp32-at/blob/master/at_customize.csv

!

9. AT Commands Examples

Response:

OK

• ESP32 Client:

AT+BLEINIT=1																														//	client	role

Response:

OK

2. Establish BLE connection:

• ESP32 Server:

- Query the BLE address. For example, if the address is "24:0a:c4:03:f4:d6".

AT+BLEADDR?																														//	get	server's	BLE	address

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

- Configure parameters of advertisements. This is optional, though. If you do not
configure the parameters of advertisements, default parameters will be applied.

AT+BLEADVPARAM=32,64,0,0,7

Response:

OK

- Configure advertisement data:

AT+BLEADVDATA="0201060B09457370726573736966030302A0"

/*		The	adv	data	is	

	*		02	01	06		//<length>,<type>,<data>

	*		0A	09	457370726573736966	//<length>,<type>,<data>	

	*		03	03	02A0		//<length>,<type>,<data>	

*/

Response:

OK

If you do not configure the advertisement data, then the payload will be empty when
scanned.

You can also configure the response data of the scanning (ScanRspData):

AT+BLESCANRSPDATA="0201060B09457370726573736966030302A0"

OK

The ScanRspData can be discovered in an active scan.

- Start advertising.

Espressif ! /!79 97 2019.06

!

9. AT Commands Examples

AT+BLEADVSTART

Response:

OK

• ESP32 Client:

- Configure the scanning parameters. This is optional, though. For example, in the
active-scan mode, the command is as follows:

AT+BLESCANPARAM=1,0,0,100,50

Response:

OK

- Start scanning.

AT+BLESCAN=1,3

Response:

+BLESCAN:<BLE	address>,<rssi>,<adv_data>,<scan_rsp_data>

OK

- Establish the BLE connection, when the server is scanned successfully.

AT+BLECONN=0,"24:0a:c4:03:f4:d6"

Response:

OK

+BLECONN:0,"24:0a:c4:03:f4:d6"

- Update the connection parameters:

AT+BLECONNPARAM=0,30,30,0,600

OK

You can also query the result:

AT+BLECONNPARAM?

+BLECONNPARAM:0,30,30,30,0,600

OK

- Set the Maximum Transmission Unit (MTU)

The client can initiate an Exchange MTU Request after the connection has been
established:

📖 Notes:

• If the BLE connection is established successfully, it will prompt
+BLECONN:<conn_index>,<remote_BLE_address>

• If the BLE connection is broken, it will prompt +BLEDISCONN:<conn_index>,<remote_BLE_address>

Espressif ! /!80 97 2019.06

!

9. AT Commands Examples

AT+BLECFGMTU=0,200

OK

You can also query the result:

AT+BLECFGMTU?

+BLECFGMTU:0,200

OK

3. Read/Write a characteristic:

• ESP32 Server:

- Discover local services.

AT+BLEGATTSSRV?										

Response:

+BLEGATTSSRV:1,1,0xA002,1

OK

- Discover characteristics.

AT+BLEGATTSCHAR?										

Response:

+BLEGATTSCHAR:"char",1,1,0xC300

+BLEGATTSCHAR:"desc",1,1,1

+BLEGATTSCHAR:"char",1,2,0xC301

+BLEGATTSCHAR:"desc",1,2,1

+BLEGATTSCHAR:"char",1,3,0xC302

+BLEGATTSCHAR:"desc",1,3,1

OK

• ESP32 Client:

- Discover services:

AT+BLEGATTCPRIMSRV=0			

Response:

+BLEGATTCPRIMSRV:0,1,0x1801,1

+BLEGATTCPRIMSRV:0,2,0x1800,1

+BLEGATTCPRIMSRV:0,3,0xA002,1

OK

Espressif ! /!81 97 2019.06

!

9. AT Commands Examples

- Discover characteristics.

AT+BLEGATTCCHAR=0,3

Response:

+BLEGATTCCHAR:"char",0,3,1,0xC300,2

+BLEGATTCCHAR:"desc",0,3,1,1,0x2901

+BLEGATTCCHAR:"char",0,3,2,0xC301,2

+BLEGATTCCHAR:"desc",0,3,2,1,0x2901

+BLEGATTCCHAR:"char",0,3,3,0xC302,8

+BLEGATTCCHAR:"desc",0,3,3,1,0x2901

+BLEGATTCCHAR:"char",0,3,4,0xC303,4

+BLEGATTCCHAR:"desc",0,3,4,1,0x2901

+BLEGATTCCHAR:"char",0,3,5,0xC304,8

+BLEGATTCCHAR:"char",0,3,6,0xC305,16

+BLEGATTCCHAR:"desc",0,3,6,1,0x2902

+BLEGATTCCHAR:"char",0,3,7,0xC306,32

+BLEGATTCCHAR:"desc",0,3,7,1,0x2902

OK

- Read a characteristic. Please note that the target characteristic's properties have to
include the read operation.

AT+BLEGATTCRD=0,3,1

Response:

+BLEGATTCRD:0,1,30

OK

- Write a characteristic. Please note that the target characteristic's properties have to
include the write operation.

AT+BLEGATTCWR=0,3,3,,2

Response:

⚠ Notice:

• When discovering services, the ESP32 Client will get two more default services (UUID:0x1800 and
0x1801) than what the ESP32 Server will get.

• So, for the same service, the <srv_index> received by the ESP32 Client equals the <srv_index>
received by ESP32 Server + 2.

• For example, the <srv_index> of the above-mentioned service, 0xA002, is 3 when the ESP32 Client is
in the process of discovering services. But if the ESP32 Server tries to discover it with command
AT+BLEGATTSSRV?, the <srv_index> will be 1.

📖 Note:

If the ESP32 Client reads the characteristic successfully, message +READ:<conn_index>,<remote	BLE	
address> will be prompted on the ESP32 Server side.

Espressif ! /!82 97 2019.06

!

9. AT Commands Examples

>		 	 //	waiting	for	data

OK

4. Notify of a characteristic:

• ESP32 Client:

- Configure the characteristic's descriptor. Please note that the target characteristic's
properties have to include notifications.

AT+BLEGATTCWR=0,3,6,1,2						

Response:

>		 	 //	waiting	for	data,	should	input	HEX	string	"01"	here

OK

• ESP32 Server:

- Notify of a characteristic. Please note that the target characteristic's properties have
to include notifications.

AT+BLEGATTSNTFY=0,1,6,3

Response:

>		 	 //	waiting	for	data

OK

5. Indicate a characteristic:

• ESP32 Client:

📖 Note:

If the ESP32 Client writes the characteristic successfully, message
+WRITE:<conn_index>,<srv_index>,<char_index>,[<desc_index>],<len>,<value> will be prompted on
the ESP32 Server side.

📖 Note:

If the ESP32 Client writes the descriptor successfully, message
+WRITE:<conn_index>,<srv_index>,<char_index>,	<desc_index>,<len>,<value> will be prompted on
the ESP32 Server side.

📖 Note:

• If the ESP32 Client receives the notification, it will prompt message
+NOTIFY:<conn_index>,<srv_index>,<char_index>,	<len>,<value>.

• For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index> on the ESP32
Server side + 2.

Espressif ! /!83 97 2019.06

!

9. AT Commands Examples

- Configure the characteristic's descriptor. Please note that the target characteristic's
property has to support the indicate operation.

AT+BLEGATTCWR=0,3,7,1,2					

Response:

>		 	 //	waiting	for	serial	data,	should	input	HEX	string	"02"	here

OK

• ESP32 Server:

- Indicate characteristic. Please note that the target characteristic's property has to
support the indicate operation.

AT+BLEGATTSIND=0,1,7,3	

Response:

>		 	 //	waiting	for	serial	data

OK

9.5.2.2. UART-BLE Passthrough Mode

Below is an example of using two ESP32 modules: one as a BLE server (hereafter named
as "ESP32 Server") and the other one as a BLE client (hereafter named as "ESP32 Client").
The example shows how to build BLE SPP (Serial Port Profile, UART-BLE passthrough
mode) with AT commands.

1. BLE initialization:

• ESP32 Server:

- BLE server initialization:
AT+BLEINIT=2																														//	server	role

📖 Note:

If the ESP32 Client writes the descriptor successfully, message
+WRITE:<conn_index>,<srv_index>,<char_index>,	<desc_index>,<len>,<value> will be prompted on
the ESP32 Server side.

📖 Note:

• If the ESP32 Client receives the indication, it will prompt message
+INDICATE:<conn_index>,<srv_index>,<char_index>,	<len>,<value>

• For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index> on the ESP32
Server side + 2.

⚠ Notice:

Download the service bin into the flash of the ESP32 Server.

• On how to generate a service bin, please refer to esp32-at/tools/readme.md.

• The download address of the "service bin" is the address of "ble_data" in esp32-at/at_customize.csv.

Espressif ! /!84 97 2019.06

https://github.com/espressif/esp32-at/blob/master/tools/README.md
https://github.com/espressif/esp32-at/blob/master/at_customize.csv

!

9. AT Commands Examples

Response:

OK

- Create services:

AT+BLEGATTSSRVCRE

Response:

OK

- Start services:

AT+BLEGATTSSRVSTART

Response:

OK

• ESP32 Client:

AT+BLEINIT=1																														//	client	role

Response:

OK

2. Establish BLE connection:

• ESP32 Server:

- Query the BLE address. The following section takes "24:0a:c4:03:f4:d6" as a
example.

AT+BLEADDR?																														//	get	server's	BLE	address

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

- Configure advertisement data (optional). Without the configuration, the payload of the
broadcasting packet will be empty.

AT+BLEADVDATA="0201060B09457370726573736966030302A0"

/*		The	adv	data	is	

	*		02	01	06		//<length>,<type>,<data>

	*		0A	09	457370726573736966	//<length>,<type>,<data>	

	*		03	03	02A0		//<length>,<type>,<data>	

*/

Response:

OK

Espressif ! /!85 97 2019.06

!

9. AT Commands Examples

- Start advertising.

AT+BLEADVSTART

Response:

+BLEADDR:24:0a:c4:03:f4:d6

OK

• ESP32 Client:

- Start scanning:

AT+BLESCAN=1,3

Response:

+BLESCAN:<BLE	address>,<rssi>,<adv_data>,<scan_rsp_data>

OK

- Establish the BLE connection, after the server is scanned successfully.

AT+BLECONN=0,"24:0a:c4:03:f4:d6"

Response:

OK

+BLECONN:0,"24:0a:c4:03:f4:d6"

3. Discover Services:

• ESP32 Server:

- Discover local services.

AT+BLEGATTSSRV?										

Response:

+BLEGATTSSRV:1,1,0xA002,1

OK

- Discover characteristics:

AT+BLEGATTSCHAR?										

Response:

📖 Notes:

• If the BLE connection is established successfully, the message
+BLECONN:<conn_index>,<remote_BLE_address> will appear.

• If the BLE connection is broken, the message +BLEDISCONN:<conn_index>,<remote_BLE_address> will
appear.

Espressif ! /!86 97 2019.06

!

9. AT Commands Examples

+BLEGATTSCHAR:"char",1,1,0xC300

+BLEGATTSCHAR:"desc",1,1,1

+BLEGATTSCHAR:"char",1,2,0xC301

+BLEGATTSCHAR:"desc",1,2,1

+BLEGATTSCHAR:"char",1,3,0xC302

+BLEGATTSCHAR:"desc",1,3,1

OK

• ESP32 Client:

- Discover services:

AT+BLEGATTCPRIMSRV=0			

Response:

+BLEGATTCPRIMSRV:0,1,0x1801,1

+BLEGATTCPRIMSRV:0,2,0x1800,1

+BLEGATTCPRIMSRV:0,3,0xA002,1

OK

- Discover characteristics.

AT+BLEGATTCCHAR=0,3

Response:

+BLEGATTCCHAR:"char",0,3,1,0xC300,2

+BLEGATTCCHAR:"desc",0,3,1,1,0x2901

+BLEGATTCCHAR:"char",0,3,2,0xC301,2

+BLEGATTCCHAR:"desc",0,3,2,1,0x2901

+BLEGATTCCHAR:"char",0,3,3,0xC302,8

+BLEGATTCCHAR:"desc",0,3,3,1,0x2901

+BLEGATTCCHAR:"char",0,3,4,0xC303,4

+BLEGATTCCHAR:"desc",0,3,4,1,0x2901

+BLEGATTCCHAR:"char",0,3,5,0xC304,8

+BLEGATTCCHAR:"char",0,3,6,0xC305,16

+BLEGATTCCHAR:"desc",0,3,6,1,0x2902

+BLEGATTCCHAR:"char",0,3,7,0xC306,32

+BLEGATTCCHAR:"desc",0,3,7,1,0x2902

⚠ Notice:

• When discovering services, the ESP32 Client will get two more default services (UUID:0x1800 and
0x1801) than what the ESP32 Server will get.

• So, for the same service, the <srv_index> received by the ESP32 Client equals the <srv_index>
received by ESP32 Server plus 2.

• For example, the <srv_index> of the above-mentioned service, 0xA002, is 3 when the ESP32 Client is
in the process of discovering services. But if the ESP32 Server tries to discover it with command
AT+BLEGATTSSRV?, the <srv_index> will be 1.

Espressif ! /!87 97 2019.06

!

9. AT Commands Examples

OK

4. Configure BLE SPP:

• ESP32 Client:

- Set a characteristic that enables writing permission to TX channel for sending data.
Set another characteristic that supports notification or indication to RX channel for
receiving data.

AT+BLESPPCFG=1,3,5,3,7

Response:

OK

- Enable BLE SPP:

AT+BLESPP

Response:

OK

>																		//	waiting	for	serial	data

• ESP32 Server:

- Set a characteristic that supports notification or indication to TX channel for sending
data. Set another characteristic that enables writing permission to RX channel for
receiving data.

AT+BLESPPCFG=1,1,7,1,5

Response:

OK

- Enable BLE SPP:

AT+BLESPP

Response:

OK

>																		//	waiting	for	serial	data

📖 Note:

After ESP32 Client enabling BLE SPP, data received from serial port will be transmitted to the BLE server
directly.

Espressif ! /!88 97 2019.06

!

9. AT Commands Examples

9.5.2.3. Usage Scenarios

1. Bluetooth networking

BLE can be used to transfer the Wi-Fi SSID and Password in a Bluetooth network.

• Use AT+BLEGATTCWR for the client to pass on the SSID and password to the server.

• Use AT+BLEGATTSNTFY for the server to pass on the SSID and password to the client.

Details can be found in Section 9.5.2.1.

2. Transparent data transmission

The ESP32 AT does not support transparent data transmission over BLE for the time being.
However, users can use that basic data-transmission method to simulate the transparent
data transmission process where Host MCU can filter the data information.

• Call AT+BLEGATTCWR continuously for the client to transfer data to the server.

• Call AT+BLEGATTSNTFY continuously for the server to transfer data to the client.

Details can be found in Section 9.5.2.1.

3. OTA firmware upgrade

OTA firmware upgrade can also be implemented over BLE.

📖 Notes:

• After ESP32 Server enables BLE SPP, the data received from serial port will be transmitted to the BLE
client directly.

• If the ESP32 Client does not enable BLE SPP first, or uses other device as BLE client, then the BLE
client needs to listen to the notification or indication first. For example, if the ESP32 Client does not
enable BLE SPP first, then it should enable listening with command AT+BLEGATTCWR=0,3,7,1,1 first
for the ESP32 Server to transmit successfully.

• For the same service, the <srv_index> on the ESP32 Client side equals the <srv_index> on the ESP32
Server side plus 2.

Espressif ! /!89 97 2019.06

!

10. OTA Update

10. OTA Update
The following steps guide the users in creating a device on iot.espressif.cn and updating
the OTA BIN on it.

1. Open the website iot.espressif.cn. If using SSL OTA, it should be https://iot.espressif.cn.

!

2. Click "Join" in the upper right corner of the webpage, and enter your name, email
address, and password.

!

3. Click on "Device" in the upper right corner of the webpage, and click on "Create" to
create a device.

Espressif ! /!90 97 2019.06

http://iot.espressif.cn
http://iot.espressif.cn
https://iot.espressif.cn

!

10. OTA Update

!

!

4. A key is generated when the device is successfully created, as the figure below shows.

Espressif ! /!91 97 2019.06

!

10. OTA Update

!

5. Use the key to compile your own OTA BIN. The process of configuring the AT OTA token
key is as follows:

!

Espressif ! /!92 97 2019.06

!

10. OTA Update

!

!

6. Click on "Product" to enter the webpage, as shown below. Click on the device created.
Enter version and corename under "ROM Deploy". Rename the BIN compiled in Step 5
as "ota.bin" and save the configuration.

⚠ Notice:

If using SSL OTA, the option "OTA based upon ssl" should be selected.

Espressif ! /!93 97 2019.06

!

10. OTA Update

!

!

7. Click on the ota.bin to save it as the current version.

Espressif ! /!94 97 2019.06

!

10. OTA Update

!

8. Run the command AT+CIUPDATE. If the network is connected, OTA update w. 

Espressif ! /!95 97 2019.06

!

11. Q & A

11. Q & A
If you have any questions about the execution of AT commands, please contact us via
Espressif Technical Inquiries. Please describe the issues that you might encounter, including
any relevant details, as follows:

• AT Version information or AT Command: You can use command AT+GMR to acquire
information on your current AT command version.

• Hardware Module information: for example, ESP-WROOM-32.

• Screenshot of the test steps, for example:

!

• If possible, please provide the printed log information, such as:

Guru	Meditation	Error	of	type	StoreProhibited	occurred	on	core			0.	Exception	was	unhandled.

Register	dump:

PC					:		40135735		PS					:		00060f30		A0					:		800f913b		A1					:		3ffd66c0		

A2					:		00000000		A3					:		3ffd6828		A4					:		00000b68		A5					:		b33f0000		

A6					:		b33fffff		A7					:		3ffb004c		A8					:		00000003		A9					:		3ffd66a0		

A10				:		3ffd6828		A11				:		00000b69		A12				:		00060020		A13				:		3ffc2d30		

A14				:		00000003		A15				:		00060023		SAR				:		00000000		EXCCAUSE:		0000001d		

EXCVADDR:		00000038		LBEG			:		00000000		LEND			:		00000000		LCOUNT	:		00000000		

Rebooting...

Espressif ! /!96 97 2019.06

https://www.espressif.com/en/company/contact/technical-inquiries-category

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without
notice.
THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.
All liability, including liability for infringement of any proprietary rights, relating to the use of
information in this document, is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.
The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.
All trade names, trademarks and registered trademarks mentioned in this document are
property of their respective owners, and are hereby acknowledged.
Copyright © 2019 Espressif Inc. All rights reserved.

Espressif IOT Team

www.espressif.com

�

http://www.espressif.com

	Overview
	User-Defined AT Commands
	Downloading AT Firmware into Flash
	Command Description
	Basic AT Commands
	Overview
	Commands
	AT—Tests AT Startup
	AT+RST—Restarts the Module
	AT+GMR—Checks Version Information
	AT+GSLP—Enters Deep-sleep Mode
	ATE—AT Commands Echoing
	AT+RESTORE—Restores the Factory Default Settings
	AT+UART_CUR—Current UART Configuration, Not Saved in Flash
	AT+UART_DEF—Default UART Configuration, Saved in Flash
	AT+SLEEP—Sets the Sleep Mode
	AT+SYSRAM—Checks the Remaining Space of RAM
	AT+SYSFLASH—Set User Partitions in Flash *
	AT+FS—Filesystem Operations *
	AT+RFPOWER—Set RF TX Power *
	Wi-Fi AT Commands
	Overview
	Commands
	AT+CWMODE—Sets the Wi-Fi Mode (Station/SoftAP/Station+SoftAP)
	AT+CWJAP—Connects to an AP
	AT+CWLAPOPT—Sets the Configuration for the Command AT+CWLAP
	AT+CWLAP—Lists the Available APs
	AT+CWQAP—Disconnects from the AP
	AT+CWSAP—Configuration of the ESP32 SoftAP
	AT+CWLIF—IP of Stations to Which the ESP32 SoftAP is Connected
	AT+CWDHCP—Enables/Disables DHCP
	AT+CWDHCPS—Sets the IP Address Allocated by ESP32 SoftAP DHCP (The configuration is saved in Flash.)
	AT+CWAUTOCONN—Auto-Connects to the AP or Not
	AT+CWSTARTSMART—Starts SmartConfig
	AT+CWSTOPSMART—Stops SmartConfig
	AT+WPS—Enables the WPS Function
	AT+CWHOSTNAME—Configures the Host Name of ESP32 Station *
	AT+MDNS—Configures the MDNS Function *
	TCP/IP-Related AT Commands
	Overview
	Commands
	AT+CIPSTATUS—Gets the Connection Status
	AT+CIPDOMAIN—DNS Function
	AT+CIPDNS—Sets User-defined DNS Servers; Configuration Saved in the Flash
	AT+CIPSTAMAC—Sets the MAC Address of the ESP32 Station
	AT+CIPAPMAC—Sets the MAC Address of the ESP32 SoftAP
	AT+CIPSTA—Sets the IP Address of the ESP32 Station
	AT+CIPAP—Sets the IP Address of the ESP32 SoftAP
	AT+CIPSTART—Establishes TCP Connection, UDP Transmission or SSL Connection
	AT+CIPSSLCCONF—Set Configuration of SSL Client *
	AT+CIPSEND—Sends Data
	AT+CIPSENDEX—Sends Data
	AT+CIPCLOSE—Closes TCP/UDP/SSL Connection
	AT+CIFSR—Gets the Local IP Address
	AT+CIPMUX—Enables/Disables Multiple Connections
	AT+CIPSERVER—Deletes/Creates TCP or SSL Server *
	AT+CIPSERVERMAXCONN—Set the Maximum Connections Allowed by Server *
	AT+CIPMODE—Configures the Transmission Mode
	AT+SAVETRANSLINK—Saves the Transparent Transmission Link in Flash
	AT+CIPSTO—Sets the TCP Server Timeout
	AT+CIPSNTPCFG—Sets the Time Zone and the SNTP Server
	AT+CIPSNTPTIME—Queries the SNTP Time
	AT+CIUPDATE—Updates the Software Through Wi-Fi
	AT+CIPDINFO—Shows the Remote IP and Port with "+IPD"
	+IPD—Receives Network Data
	AT+PING—Ping Packets
	BLE-Related AT Commands
	Overview
	Commands
	AT+BLEINIT—BLE Initialization
	AT+BLEADDR—Sets BLE Device's Address
	AT+BLENAME—Sets BLE Device's Name
	AT+BLESCANPARAM—Sets Parameters of BLE Scanning
	AT+BLESCAN—Enables BLE Scanning
	AT+BLESCANRSPDATA—Sets BLE Scan Response
	AT+BLEADVPARAM—Sets Parameters of Advertising
	AT+BLEADVDATA—Sets Advertising Data
	AT+BLEADVSTART—Starts Advertising
	AT+BLEADVSTOP—Stops Advertising
	AT+BLECONN—Establishes BLE connection
	AT+BLECONNPARAM—Updates parameters of BLE connection
	AT+BLEDISCONN—Ends BLE connection
	AT+BLEDATALEN—Sets BLE Data Packet Length
	AT+BLECFGMTU—Sets GATT MTU Length
	AT+BLEGATTSSRVCRE—GATTS Creates Services
	AT+BLEGATTSSRVSTART—GATTS Starts Services
	AT+BLEGATTSSRVSTOP—GATTS Stops Services
	AT+BLEGATTSSRV—GATTS Discovers Services
	AT+BLEGATTSCHAR—GATTS Discovers Characteristics
	AT+BLEGATTSNTFY—GATTS Notifies of Characteristics
	AT+BLEGATTSIND—GATTS Indicates Characteristics
	AT+BLEGATTSSETATTR—GATTS Sets Characteristic
	AT+BLEGATTCPRIMSRV—GATTC Discovers Primary Services
	AT+BLEGATTCINCLSRV—GATTC Discovers Included Services
	AT+BLEGATTCCHAR—GATTC Discovers Characteristics
	AT+BLEGATTCRD—GATTC Reads a Characteristic
	AT+BLEGATTCWR—GATTC Writes Characteristic
	AT+BLESPPCFG—Configures BLE SPP
	AT+BLESPP—Enables BLE SPP
	AT+BLESECPARAM—Set Parameters of BLE SMP
	AT+BLEENC—Starts a Pairing Request
	AT+BLEENCRSP—Sets a Pairing Response
	AT+BLEKEYREPLY—Reply to a Pairing Key
	AT+BLECONFREPLY—Reply to a Pairing Result
	AT+BLEENCDEV—Lists All Devices that Bonded
	AT+BLEENCCLEAR—Unbind Device
	AT Commands with Configuration Saved in the NVS Area
	AT Messages
	AT Commands Examples
	ESP32 as a TCP Client in Single Connection
	UDP Transmission
	UDP (with Fixed Remote IP and Port)
	UDP (with Changeable Remote IP and Port)
	Transparent Transmission
	ESP32 as a TCP Client in UART-Wi-Fi Passthrough (Single Connection Mode)
	UDP Transmission (UART-Wi-Fi PassthroughTransmission)
	ESP32 as a TCP Server in Multiple Connections
	BLE AT Examples
	iBeacon Examples
	BLE Communication Examples
	OTA Update
	Q & A

