
Download example

Open a terminal and run the following command to download the examples

and unzip them.

wget https://www.waveshare.com/w/upload/0/00/PicoGo_Code.zip

unzip PicoGo_Code.zip

Test Motors

 Open the motor.py in Thonny IDE, and run it

 The PicoGo will move forward, then backward, turn left and turn right after

running the codes.

Note: You need to turn the power switch to ON, and make sure that the

PicoGo has enough place to move.

 Codes:

. . .

 M = PicoGo() #Instantiate the PicoGo class, which has defined

the functions of motions (forward, backward, left, right stop and the

intialiation.

 M.forward(50) #Move the motor forward in half speed (0- 100)

 utime.sleep(0.5) #Set sleep time to let the Picogo keep moving

for 0.5s

 M.backward(50) #Move the motor backward in half speed (0- 100)

 utime.sleep(0.5)

 M.left(30) #Let the motor turn left in speed 30 (0-100)

 utime.sleep(0.5)

 M.right(30) #Let the motor turn right in speed 30 (0-100)

 utime.sleep(0.5)

 M.stop() #Stop the motor

Infrared Remote Control

 Open the IRremote.py in ThonnyIDE and run it.

 Press the Infrared controller to control the PicoGo

 2，8，4，6，5 are used for forwarding, backward, turn left, turn right and

stop. You can press the - or + keys to adjust the speed and press EQ to

restore the setting.

 Different infrared remote controllers may have different key codes, if you

use other controllers, you may need to modify the codes.

Note: If you need to make the PicoGo run without cable, you need to

rename the IRremote.py as main.py and save it to Raspberry Pi Pico. The

codes also need to call the Motor.py, you need to save it to Raspberry Pi

Pico as well.

 Codes:

. . .

while True:

 key = getkey() #use the getkey function to read the

singal of Infrated controller.

 if(key != None):

 n = 0

 if key == 0x18:

 M.forward(speed) #If the value of controlled is 0x18,

move the motor forward

 print("forward")

 if key == 0x08:

 M.left(20) #If the value of controlled is 0x08,

turn the Picogo toward left

 print("left")

 if key == 0x1c:

 M.stop() #If the value of controlled is 0x1C,

stop the motor

 print("stop")

 if key == 0x5a:

 M.right(20) #If the value of controlled is 0x5a,

turn the Picogo toward right

 print("right")

 if key == 0x52:

 M.backward(speed) #If the value of controlled is 0x52,

move the motor backward

 print("backward")

 if key == 0x09:

 speed = 50 #If the value of controlled is 0x09,

set the speed to 50

 print(speed)

 if key == 0x15:

 if(speed + 10 < 101):

 speed += 10 #If the value of controlled is 0x15,

speed up the motor in 10, max is 100

 print(speed)

 if key == 0x07:

 if(speed - 10 > -1):

 speed -= 10 #If the value of controlled is 0x07,

slow down the motor in 10, min is 0

 print(speed)

 else:

 n += 1

 if n > 800:

 n = 0

 M.stop() #If the controller doesn't be operated

for a certain time, stop the motors.

Infrared Obstacle Avoidance

 Open the Infrared-Obstacle-Avoidance.py in Thonny IDE, rename it as

main.py, and save it to Pico. Disconnect the USB cable and run it.

 When there is no obstacle in front of the car, the green LED light in front of

the car will be off. When the car meets an obstacle, the green LED light in

front will be on.

 If the LED light is not bright or keeps brightening, you can adjust two

potentiometers on the bottom of the PicoGo, so that the LED is just out of

state. The detection distance is the farthest.

 Procedure phenomenon is no obstacle when the car straight, encountered

obstacles when the car to turn right.

 Code:

...

while True:

 DR_status = DSR.value() # Read the value of the right Infrared

sensor

 DL_status = DSL.value() # Read the value of the left Infrared

sensor

 if((DL_status == 0) and (DR_status == 0)): #If the value of

both the sensor are 0, there is obstace in the front, turn left

 M.left(10)

 elif((DL_status == 0) and (DR_status == 1)): #If the DL value

is 0 and the DR value is 1, there is obstace in the left side, turn

right

 M.right(10)

 elif((DL_status == 1) and (DR_status == 0)): #If the DL value

is 1 and the DR value is 0, there is obstace in the right side, turn

left.

 M.left(10)

 else:

 M.forward(20) #else, there is

no obstace, keep moving forward.

 utime.sleep_ms(10)

Ultrasonic Ranging

 Open the Ultrasionc_Ranging.py in Thonny IDE, the detected distance will be

shown on the shell.

 Because the ultrasonic wave will be reflected, the front side of the obstacle

plane is not in front of the ultrasonic wave but with the ultrasonic wave

formed an Angle of the measured distance may be inaccurate.

 Codes:

...

def dist(): #Function to read the sensor data and

caculate the distance

 Trig.value(1)

 utime.sleep_us(10)

 Trig.value(0)

 while(Echo.value() == 0):

 pass

 ts=utime.ticks_us()

 while(Echo.value() == 1):

 pass

 te=utime.ticks_us()

 distance=((te-ts)*0.034)/2

 return distance

https://www.waveshare.com/wiki/File:PicoGo-01.png

while True:

 print("Distance:%6.2f cm" % dist()) # Print the Distance data to

the console.

 utime.sleep(1)

Ultrasonic Obstacle Avoidance

 Open the Ultrasionc-Obstacle-Avoidance.py in Thonny IDE, rename it as

main.py, and save it to Raspberry Pi Pico.

 Run the program after disconnecting the USB cable. Go straight when there

is no obstacle, and turn right when there is an obstacle.

 Codes；

...

def dist(): #Function for reading data of Ultrasonic sensor

and calculate the distance

 Trig.value(1)

 utime.sleep_us(10)

 Trig.value(0)

 while(Echo.value() == 0):

 pass

 ts=utime.ticks_us()

 while(Echo.value() == 1):

 pass

 te=utime.ticks_us()

 distance=((te-ts)*0.034)/2

 return distance

while True:

 D = dist() #read the distance data

 if(D <= 20): #Turn right if there the distance of obstace is

shorteer than 20

 M.right(20)

 #Ab.left()

 else: #else keep moving forward

 M.forward(20)

 utime.sleep_ms(20)

Ultrasonic Infrared Obstacle Avoidance

 Open the Ultrasionc-Infrared-Obstacle-Avoidance.py in Thonny, rename it as

main.py, and save it to Raspberry Pi Pico.

 Run the program after disconnecting the USB cable. Go straight when there

is no obstacle, and turn right when there is an obstacle. The combination of

ultrasonic and infrared has a better obstacle avoidance effect and a higher

success rate.

 Codes:

...

while True:

 D = dist() #read the distance data of Ultrasonic

sensor

 DR_status = DSR.value() #read the distance data of right

Infrared sensor

 DL_status = DSL.value() #read the distance data of left

Infrared sensor

 if((D <= 20) or (DL_status == 0) or (DR_status == 0)): #If there

is obstace detected, turn right

 M.right(20)

 #Ab.left()

 else:

 M.forward(40) #else, keep moving forward.

 utime.sleep_ms(20)

RGB LED

 Open the WS2812.py in Thonny and run it.

 Four colored LED lights at the bottom of the car will show red, yellow, green,

clear color, blue, purple, white, and then show the color light effect.

 Codes:

...

if __name__=='__main__':

 strip = NeoPixel() #instantiate the NeoPizel class which is

used to initial LED controller, and set LED

 print("fills")

 for color in strip.COLORS: #Set the LED to show color in loop

(BLACK, RED, GREEN, CYAN, BLUE, PURPLE, WHITE)

 strip.pixels_fill(color) #Set the LED color

 strip.pixels_show() # Turn on the RGB LED

 time.sleep(0.5)

 print("chases")

 for color in strip.COLORS: #Turn on the RGB LED one by one

 strip.color_chase(color, 0.05)

 print("rainbow") #Change the color in loop like rainbow

 while(1):

 strip.rainbow_cycle(0.02)

1.14inch LCD

 Open the ST7789.py in Thonny IDE and run it.

 After the program runs normally, LCD will display the string.

 Codes:

...

if __name__=='__main__':

 lcd = ST7789() #instantiate the function of LCD controlling

 lcd.fill(0xFFFF) #Set the backlight color

 lcd.show() #display

 lcd.text("Raspberry Pi Pico",10,5,0xFF00) #Draw text on the

buffer with coordination 10(x), 5(y)

 lcd.text("PicoGo",10,15) #Draw text on the

buffer

 lcd.text("Waveshare.com",10,25,0x07E0) #Draw text on the

buffer

 lcd.show() #Display the content

from buffer

Battery Voltage Detection

 Open the Battery_Voltage.py in Thonny IDE and run it.

 LCD will display chip temperature, battery voltage, and power percentage.

The percentage of electric quantity is obtained by simple linear conversion

of voltage. The actual battery voltage and electric quantity are not linear, so

there will be some error in this percentage.

 Codes:

...

while (1):

 utime.sleep(1)

 reading = temp.read_u16() * 3.3 / (65535) #Read

the temperature data from register

 temperature = 27 - (reading - 0.706)/0.001721

#calculate the temperature data

 v = bat.read_u16()*3.3/65535 * 2 #Read

the voltage data from register

 p = (v - 3) * 100 / 1.2

#Calculat the battery data

 if(p < 0):p=0

 if(p > 100):p=100

 lcd.fill_rect(145,50,65,40,0xF232)

#Display the temperature, voltage and battery data to LCD,

 lcd.text("temperature : {:5.2f}

C".format(temperature),30,50,0xFFFF) #use the ST7789.py as libraries

 lcd.text("Voltage : {:5.2f} V".format(v),30,65,0xFFFF)

 lcd.text("percent : {:3.1f} %".format(p),30,80,0xFFFF)

 lcd.show()

Tracking Sensor Test

 Open the TRsensor.py in Thonny IDE and run it.

 The shell interface will display the values of the five tracking sensors. The

data range is 600~900 when the PicoGo is put on the white paper, and the

data range is 0~50 when the PicoGo is put in the air.

 Codes:

...

if __name__ == '__main__':

 print("\nTRSensor Test Program ...\r\n")

https://www.waveshare.com/wiki/File:PicoGo-02.png

 TRS=TRSensor() #Instantiate the TRSensor class, whic features

fucntions ofr read analog data and calibrates...

 while True:

 print(TRS.AnalogRead()) #Print the analog data red

 time.sleep(0.1)

Infrared Tracking

 Open the Line-Tracking.py file in Thonny IDE, rename it as main.py, and save

it to Raspberry Pi Pico.

 Tracking sensor can detect black line with white background (or white line

with a black background, need to modify program).

 The tracking board can be made by sticking black tape in the white KT

board. The width of the black track is 15cm. If the background color is too

dark, the tracking effect will be affected.

 After disconnecting the USB cable, running the program, and putting the car

in the black line, the car will rotate left and right, this is the car calibration

stage. If the calibration phase operation error will directly affect the tracking

effect.

 Codes:

...

while True:

 #print(TRS.readCalibrated())

 #print(TRS.readLine())

 position,Sensors = TRS.readLine() #Use the TRsensor.py as

libraries function, read the data of Infrared tracking sensor

 #time.sleep(0.1)

 if((Sensors[0] + Sensors[1] + Sensors[2]+ Sensors[3]+ Sensors[4]) >

4000): #Check the data of sensors

 M.setMotor(0,0)

 else:

 # The "proportional" term should be 0 when we are on the line.

 proportional = position - 2000

 # Compute the derivative (change) and integral (sum) of the

position.

 derivative = proportional - last_proportional

 integral += proportional

 # Remember the last position.

 last_proportional = proportional

 '''

 // Compute the difference between the two motor power settings,

 // m1 - m2. If this is a positive number the robot will turn

 // to the right. If it is a negative number, the robot will

 // turn to the left, and the magnitude of the number determines

 // the sharpness of the turn. You can adjust the constants by

which

 // the proportional, integral, and derivative terms are

multiplied to

 // improve performance.

 '''

 power_difference = proportional/30 + derivative*2;

 if (power_difference > maximum):

 power_difference = maximum

 if (power_difference < - maximum):

 power_difference = - maximum

 if (power_difference < 0):

 M.setMotor(maximum + power_difference, maximum)

 else:

 M.setMotor(maximum, maximum - power_difference)

Infrared Tracking-Integrated

 Open a Line-Tracking2.py in Thonny IDE, rename it as main.py, and save it to

Raspberry Pi Pico.

 After disconnecting the USB cable, running the program, and putting the car

in the black line, the car will rotate left and right to calibrate. After

calibration, the black line will be run.

 When there is an obstacle in front of the car, the car will stop and the buzzer

will sound. After the obstacle is cleared, the car will continue to run. Pick up

the car and the motor will stop.

 During the calibration stage of the car, the four RGBS display red, green, and

blue respectively. Change. The RGB LED will display the color light effect

when tracking is running.

 Codes:

...

#This following function combines the Infrared sensor to detect

obstacles while following the line.

while True:

 position,Sensors = TRS.readLine()

 DR_status = DSR.value()

 DL_status = DSL.value()

 if((Sensors[0] + Sensors[1] + Sensors[2]+ Sensors[3]+ Sensors[4]) >

4000):

 Buzzer.value(0)

 M.setMotor(0,0)

 elif((DL_status == 0) or (DR_status == 0)):

 Buzzer.value(1)

 M.setMotor(0,0)

 else:

 Buzzer.value(0)

 # The "proportional" term should be 0 when we are on the line.

 proportional = position - 2000

 # Compute the derivative (change) and integral (sum) of the

position.

 derivative = proportional - last_proportional

 #integral += proportional

 # Remember the last position.

 last_proportional = proportional

 '''

 // Compute the difference between the two motor power settings,

 // m1 - m2. If this is a positive number the robot will turn

 // to the right. If it is a negative number, the robot will

 // turn to the left and the magnitude of the number determines

 // the sharpness of the turn. You can adjust the constants by

which

 // the proportional, integral, and derivative terms are

multiplied to

 // improve performance.

 '''

 power_difference = proportional/30 + derivative*2;

 if (power_difference > maximum):

 power_difference = maximum

 if (power_difference < - maximum):

 power_difference = - maximum

 if (power_difference < 0):

 M.setMotor(maximum + power_difference, maximum)

 else:

 M.setMotor(maximum, maximum - power_difference)

 for i in range(strip.num):

 strip.pixels_set(i, strip.wheel(((i * 256 // strip.num) + j) &

255))

 strip.pixels_show()

 j += 1

 if(j > 256):

 j = 0

Ultrasonic Infrared Following

 Open the Ultrasionc-Infrared-follow.py in Thonny, rename it as main.py, and

save it to Raspberry Pi Pico.

 Run the program after disconnecting the USB cable, place the object in the

sensor of the car, and the car will automatically follow the object to move.

 The following distance of the car can be set, the default following distance is

5cm, the car will stop when it is 5cm away from the object, the car will

continue to run when it is larger than 5cm and smaller than 7cm.

 Turn left and right by infrared.

 When the car is running, the RGB LED will display the color light effect.

 Codes:

...

#Combine Ultrasonic and infrares sensor to follow lines and obstacing,

the LCD is used to display text

while True:

 D = dist()

print("Distance:%6.2f cm" % dist())

utime.sleep(1)

 DR_status = DSR.value()

 DL_status = DSL.value()

 if((utime.ticks_ms() - t) > 3000):

 t=utime.ticks_ms()

 reading = temp.read_u16() * 3.3 / (65535)

 temperature = 27 - (reading - 0.706)/0.001721

 v = bat.read_u16()*3.3/65535 * 2

 p = (v - 3) * 100 / 1.2

 if(p < 0):p=0

 if(p > 100):p=100

 lcd.fill_rect(145,50,50,40,0xF232)

 lcd.text("temperature : {:5.2f}

C".format(temperature),30,50,0xFFFF)

 lcd.text("Voltage : {:5.2f} V".format(v),30,65,0xFFFF)

 lcd.text("percent : {:3.1f} %".format(p),30,80,0xFFFF)

 lcd.show()

 print(D)

 if(D<5):

 M.stop()

 elif((DL_status == 0) and (DR_status == 1)):

 M.left(20)

 elif((DL_status == 1) and (DR_status == 0)):

 M.right(20)

 elif(((D>5) and(D<7)) or ((DL_status == 0) and (DR_status == 0))):

 M.forward(30)

 else:

 M.stop()

 utime.sleep_ms(20)

 for i in range(strip.num):

 strip.pixels_set(i, strip.wheel(((i * 256 // strip.num) + j) &

255))

 strip.pixels_show()

 j += 1

 if(j > 256):

 j = 0

Bluetooth Remote Control

 Open the bluetooth.py in the Thonny IDE, rename it as main.py, and save it

to Raspberry Pi Pico

 Install PicoGo APP in your phone (only support Android)

https://www.waveshare.com/w/upload/0/00/PicoGo_Code.zip

 Start the APP, select Bluetooth control, and click "Search" in the upper right corner.

After about a few seconds, the corresponding Bluetooth device will be displayed in

the list normally.

 Select jDY-33-SPP. If you select "JDy-33-ble", the connection to the device will fail.

Go to the next page and select remote Control

https://www.waveshare.com/wiki/File:PicoGo-03.png

 Press the button to control the car, but also can control the buzzer sound, and RGB

LED display different colors.

 Codes:

https://www.waveshare.com/wiki/File:PicoGo-04.jpg

...

while True:

 s=uart.read() #Use serial port to read the data from Bluetooth

module

 if(s != None):

 try:

 j=ujson.loads(s) #use ujson librariries to handle the

bluetooth data

 #print(j)

 cmd=j.get("Forward")

 if cmd != None:

 if cmd == "Down":

 M.forward(speed)

 uart.write("{\"State\":\"Forward\"}")

 elif cmd == "Up":

 M.stop()

 uart.write("{\"State\":\"Stop\"}")

 cmd = j.get("Backward")

 if cmd != None:

 if cmd == "Down":

 M.backward(speed)

 uart.write("{\"State\":\"Backward\"}")

 elif cmd == "Up":

 M.stop()

 uart.write("{\"State\":\"Stop\"}")

 cmd = j.get("Left")

 if cmd != None:

 if cmd == "Down":

 M.left(20)

 uart.write("{\"State\":\"Left\"}")

 elif cmd == "Up":

 M.stop()

 uart.write("{\"State\":\"Stop\"}")

 cmd = j.get("Right")

 if cmd != None:

 if cmd == "Down":

 M.right(20)

 uart.write("{\"State\":\"Right\"}")

 elif cmd == "Up":

 M.stop()

 uart.write("{\"State\":\"Stop\"}")

 cmd = j.get("Low")

 if cmd == "Down":

 uart.write("{\"State\":\"Low\"}")

 speed = 30

 cmd = j.get("Medium")

 if cmd == "Down":

 uart.write("{\"State\":\"Medium\"}")

 speed = 50

 cmd = j.get("High")

 if cmd == "Down":

 uart.write("{\"State\":\"High\"}")

 speed = 100

 cmd = j.get("BZ")

 if cmd != None:

 if cmd == "on":

 BUZ.value(1)

 uart.write("{\"BZ\":\"ON\"}")

 uart.write("{\"State\":\"BZ:\ON\"}")

 elif cmd == "off":

 BUZ.value(0)

 uart.write("{\"BZ\":\"OFF\"}")

 uart.write("{\"State\":\"BZ:\OFF\"}")

 cmd = j.get("LED")

 if cmd != None:

 if cmd == "on":

 led.value(1)

 uart.write("{\"LED\":\"ON\"}")

 uart.write("{\"State\":\"LED:\ON\"}")

 elif cmd == "off":

 led.value(0)

 uart.write("{\"LED\":\"OFF\"}")

 uart.write("{\"State\":\"LED:\OFF\"}")

 cmd = j.get("RGB")

 if cmd != None:

 rgb=tuple(eval(cmd))

 strip.pixels_set(0, rgb)

 strip.pixels_set(1, rgb)

 strip.pixels_set(2, rgb)

 strip.pixels_set(3, rgb)

 strip.pixels_show()

 uart.write("{\"State\":\"RGB:\("+cmd+")\"}")

 except:

 print("err")

...

