
20+
Lessons

17
Modules in one

www.elecrow.com

Arduino Version

1

2

10

16

22

26

31

39

44

50

56

62

68

73

79

101

109

114

117

123

130

147

153

Introduciton

Getting Started

Lesson 1 - LED Control

Lesson 2 - Button Control LED

Lesson 3 - Breathing LED

Lesson 4 - 2.4 inch TFT display

Lesson 5 - Traffic Light

Lesson 6 - Intelligent Street Light

Lesson 7 - Ultrasonic Ranging Display

Lesson 8 - Obstacle Close Range Alarm

Lesson 9 - Brightness Display

Lesson 10 - Temperature&Humidity Detecting System

Lesson 11 - Servo Control

Lesson 12 - IR control LED

Lesson 13 - Weather Reminder

Lesson 14 - Servo Angle Control

Lesson 15 - Polite Automatic Door

Lesson 16 - Sound Reminder

Lesson 17 - Calculation Of Acceleration

Lesson 18 - Smart Corridor Light

Lesson 19 - Simple Calculator

Lesson 20 - Hall Counter

Lesson 21 - Smoke Alarm

Table of contents

Introduction

Welcome to the User Manual for the All-in-one Starter Kit for PICO 2. Let’s begin

our journey into the world of the PICO 2 development board and its sensors.

Rest assured, this development board is equipped with 21 courses that are

designed to be progressively challenging, engaging, and thought-provoking.

These courses will guide you step-by-step through the essential knowledge. Here,

you will become familiar with electronic modules, hone your logical thinking skills,

enhance your creative design capabilities, and implement the functionality of

these modules through programming.

The learning process starts with understanding how to install the programming

software, followed by an introduction to the PICO 2 development board and its

various sensors. You will then delve into the programming functions of these

sensors and the programming language they utilize, ultimately learning how to

apply these sensors in practical applications. Each step is meticulously explained,

making it easy for beginners to quickly grasp C/C++ programming.

The All-in-one Starter Kit for PICO 2 includes 17 electronic modules, each with its

unique characteristics and functions, specifically designed for beginners and an

ideal choice for getting started. For example, the light sensor allows beginners to

control real-world lighting devices through programming.

In summary, by working with this development board, you will learn the

fundamental knowledge and principles of sensors, understand important concepts

such as digital and analog signals, analog-to-digital conversion, and programming

logic, and master the use of some complex electronic modules. Most importantly,

through PICO 2 programming, you will further enhance your logical thinking skills.

For the programming software, we will utilize the Arduino IDE. Arduino IDE is an

easy-to-use open-source platform and one of the best choices for learning

programming.

01

Download Arduino in Windows system

Getting Started
Installing Arduino IDE

• STEP 1:
Login to Arduino official website, download Arduino.
Arduino official website: https://www.arduino.cc/en/software/

• STEP 2:
Select your computer's corresponding system to download, such as Window system.

• STEP 3:
Click JUST DOWNLOAD and select the save location to start the download.

0202

• STEP 4:

1. When installing Arduino, please locate the executable file with the .exe extension
within the folder where you previously saved, which is the Arduino installation package.

2. After double-clicking the installation package, this page will appear. Click on 'I Agree '.

3. Check all options by default and click Next.

03

4. Click on 'Browse' to select the installation location, it is recommended to install it on
any drive other than the C: drive. Then click 'Install '.

5. Installation Complete,click 'Close'.

04

After waiting for the Arduino IDE installation to complete, open the Arduino IDE.

1. Find the settings in Arduino IDE

2. Put this link up：
https://github.com/earlephilhower/arduino-pico/releases/download/global
/package_rp2040_index.json

3. Search for rp2040(If you have previously downloaded and installed other versions of
RP2040, please uninstall the previous version thoroughly before reinstalling version
4.2.0.)

This way, we can run the code we will write later on the All-in-one Starter Kit for Pico2.

Download PICO development board options

05

 Flie: This lets you create, open, save, and manage sketch files, access sample
code, adjust editor preferences, export compiled files, and exit the Arduino IDE—mak-
ing it easy to handle project files and configure your workspace.

 Edit: This is for editing your code, including undo, redo, cut, copy, paste, find
and replace, select all, as well as commenting and uncommenting code—helping you
modify your program quickly and efficiently.

 Sketch: This handles compiling and uploading your code, allowing you to verify
syntax, upload programs to your board, manage libraries, and export build
results—streamlining your development and debugging process.

 Tools: Choose your board model, serial port, and programmer, open the serial
monitor and plotter, manage libraries, and check board details—essential for hardware
setup and debugging.

1

2

3

4

1

8

9

2 3 4

7

5 13 14

10

11

12

6

Arduino IDE Introduction

06

 Help: Provide official Arduino reference materials, FAQs, troubleshooting
guides, and software version information to help users learn, use, and resolve issues
they may encounter during development.

 Verify: Compile the Arduino code to check for syntax errors and issues without
uploading it, ensuring the code is correct and executable.

 Upload: Upload the compiled code to the Arduino board to run and test the
program on the actual hardware.

 Sketchbook: Used for managing and quickly accessing all saved Arduino
sketches, making it easy for users to open, edit, and organize their project code.

 Boards manager: Used to install, update, and manage various Arduino
board support packages, extending the IDE’s compatibility with different hardware.

 Library manager: Used to search for, install, and manage Arduino libraries,
helping users easily integrate various functional modules and streamline the develop-
ment process.

 Debug: Used to assist with code debugging by printing messages and errors
through the serial port, helping identify issues in the program and improving develop-
ment efficiency.

 Search: The Search feature allows quick find-and-replace within the code,
making it easier to locate and edit specific content and boosting editing efficiency.

 Serial Plotter: Used to plot numerical data sent from the Arduino board via
the serial port in real time, helping users visually analyze sensor readings and variable
changes.

 Serial Monitor: Used for serial communication with the Arduino board,
allowing real-time sending and displaying of text to facilitate debugging and monitoring
program status.

5

6

7

8

9

10

11

12

13

14

07

The course firmware is provided for use only. The function description and download
firmware address in the firmware are as follows:

Source code address:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/master/
factory_sourcecode/All_in_one_Starter_Kit_for_Pico2_SPI_Curriculum_V02_20250114

Course Usage Instructions

Game Usage Tutorial

Game Tutorials
• Game 1: Little Dinosaur Game
How to Play: Control the little dinosaur to jump and avoid obstacles by tapping the screen.

• Game 2: Bouncing Ball Game
How to Play: Use the left and right buttons to move the paddle left or right and bounce
the ball.

• Game 3: Snake Game
How to Play: Use the up, down, left, and right buttons to control the movement of the
snake and eat the fruits.

08

Lessons

For the above games, swiping up on the screen will bring up the menu. Clicking the
“Return” button will exit to the factory UI interface. Clicking the “Start/Stop” button can
control the game status. Once the “Start” button is clicked, the menu interface will
automatically exit.

The functions are the implementation functions for the four types of lighting effects in
the UI interface.

By modifying these four functions, you can achieve the goal of customizing the
factory-default lighting effects.

09

Lesson 1 - LED Control

Introduction
In this lesson, we'll focus on hands-on programming with LED control. By writing code to
configure GPIO pins and implement control logic, students will learn how to make LEDs
blink alternately at fixed intervals. Along the way, they’ll gain practical experience with
basic hardware control while developing a deeper understanding of time management
and loop logic—key concepts in embedded programming. This foundational knowledge
will lay the groundwork for tackling more complex projects in the future.

At the heart of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During this recombination, electrons drop from
a higher energy level to a lower one, releasing the excess energy in the form of
photons—producing light. The color (or wavelength) of the emitted light is determined by
the energy band gap of the semiconductor material. This process is a direct application
of electroluminescence.

Working Principle of LED

Hardware Used in This Lesson:

Operation Effect Diagram

LED

10

#define Red_LED 18
#define Yellow_LED 20
#define Green_LED 19

You can see: The blinking effect of the red, green, and yellow lights on the All in One
Starter Kit for Pico2.

previousMillis is used to keep track of the last time the LED state changed.

interval defines how often the LED should toggle; in this case, it's set to 1000 milliseconds,

or 1 second.

1. Hardware Connection and Initialization

2. Time Control Mechanism

Key Explanations

After Running:

unsigned long previousMillis = 0;
const long interval = 1000;

This part of the code defines the pins connected to the three LEDs, making it easier to reference
and use them in the rest of the program.

LED

11

These three variables keep track of the current state of the red, yellow, and green LEDs. In
Arduino, HIGH means the LED is on, and LOW means it's off.

3. LED State Management

int redState = LOW;
int yellowState = LOW;
int greenState = LOW;

The pinMode() function sets the LED pins as output, allowing the Arduino to control their voltage
levels.

The digitalWrite() function sets the voltage level of each LED pin based on the values of
redState, yellowState, and greenState. At the beginning, all three LEDs are off.

4. Initialization Function

void setup() {
 pinMode(Red_LED, OUTPUT);
 pinMode(Yellow_LED, OUTPUT);
 pinMode(Green_LED, OUTPUT);
 digitalWrite(Red_LED, redState);
 digitalWrite(Yellow_LED, yellowState);
 digitalWrite(Green_LED, greenState);
}

5. Main Loop and Time Judgment

void loop() {
 unsigned long currentMillis = millis();
 if (currentMillis - previousMillis >= interval) {
 previousMillis = currentMillis;
 redState = (redState == LOW) ? HIGH : LOW;
 yellowState = (yellowState == LOW) ? HIGH : LOW;
 greenState = (greenState == LOW) ? HIGH : LOW;
 digitalWrite(Red_LED, redState);
 digitalWrite(Yellow_LED, yellowState);
 digitalWrite(Green_LED, greenState);
 }
}

12

To upload the code to the All-in-One Starter Kit for Pico2, start by connecting the board
to your computer.

Programming Steps

The millis() function returns the number of milliseconds that have passed since the Arduino was
powered on.

By checking the condition currentMillis - previousMillis >= interval, the code can determine
whether the set 1-second interval has passed.

Once the interval is reached, the following actions are performed:

• previousMillis is updated to record the time of the current state change.
 The states of the three LEDs are toggled using the ternary operator (redState == LOW) ? HIGH :
LOW, which flips the state from off to on or vice versa.

 “(redState == LOW) ? HIGH : LOW” is a ternary operator expression whose core logic is to invert
the state of “redState”. Specifically:
 When “redState” equals “LOW”, the condition is true, and the expression returns “HIGH”.
 When “redState” does not equal “LOW” (i.e., it is “HIGH”), the condition is false, and the
expression returns “LOW”.

• Finally, the new states are applied to the LED pins using the digitalWrite() function so that the
LEDs reflect the updated status.

Complete Code

Connect the USB C cable

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

13

Next, you can copy the complete code from the folder into the Arduino IDE.
Make sure to select the correct development board you’re using from the Tools > Board
menu before uploading.

Before uploading the code, make sure to put the All-in-One Starter Kit for Pico2 into
bootloader mode:

 • Press and hold the BOOT button on the board.
 • While holding BOOT, press and release the RESET button.
 • Then, release the BOOT button.

The board will now enter bootloader mode. Your computer should detect it as a new
serial device. In the Arduino IDE, select this new port from the Tools > Port menu, and
you’ll be ready to upload the code.

14

Once everything runs successfully, a window will pop up.
In that window, you’ll see a file with the .uf2 extension—this represents the executable
file generated from your code upload.
Seeing the .uf2 file confirms that the code has been successfully flashed to the board!

Finally, you will be able to see the display of relevant experimental results.

Click “Run” to start the process.

15

Lesson 2 - Button Control LED

Introduction
In this lesson, we’ll use the All-in-One Starter Kit for Pico2 to learn how to control red,
green, and yellow LEDs using button input. The course covers how to connect buttons to
the development board, initialize the corresponding input pins, write logic to detect button
states, and control the LEDs—turning them on or off—based on button presses.

This system uses analog voltage detection to handle multiple button inputs. Its core
functionality is divided into three key components：

1. Button Detection: Multiple buttons are wired through a resistor voltage divider
network to the MCU’s ADC (Analog-to-Digital Converter) pin. When a button is pressed,
it produces a unique voltage level. The MCU samples these voltages using median
filtering to obtain stable readings, and then compares the result against predefined
voltage ranges to identify which specific button was pressed.

Working Principle of an MCU-Based Button-Controlled
LED System

Hardware Used in This Lesson:

LED

0

1 2 3

Here are the
labels for
Button 0
through
Button 3:

Button

16

• When pressing button 0, the
red light, yellow light, and green
light are lit simultaneously.

• When pressing button 0
again, all three lights are
turned off simultaneously.

Operation Effect Diagram

2. Logic Processing: Once a button is identified, the MCU updates internal state flags
(such as redOn, yellowOn, etc.) accordingly.
A debouncing mechanism—typically using a flag like keyIsPressed—ensures that each
press is registered only once, preventing multiple toggles due to signal noise or rapid
mechanical bouncing.

3. LED Driving: The MCU’s GPIO pins control the LEDs based on the state flags. When
a flag is set to true, the corresponding GPIO outputs a HIGH signal. This current, limited
by a resistor (eg: 220Ω), powers the LED, turning it on. For example, when redOn is
true, the red LED receives power and lights up.

LED

LED

17

• Pressing button 1 lights the red light; • Pressing button 1 again turns off the
red light；

• Pressing button 2 lights the yellow light;

• Pressing button 3 lights the green light; • Pressing button 3 again turns off the
green light.

• Pressing button 2 again turns off the
yellow light；

18

#define Red_LED 18
#define Yellow_LED 20
#define Green_LED 19
#define Button_pin 27
#define B0_L 740
#define B0_H 750

A value of false means the LED is off, while true indicates the LED is on.

This flag is used to prevent repeated triggers from a single button press, ensuring that each
press is recognized only once.

1. Hardware Connection and Constant Definition

2. LED State Management

Key Explanations

bool redOn = false;
bool yellowOn = false;
bool greenOn = false;
bool allOn = false;

The code defines the GPIO pins for the three LEDs as well as the analog pin connected to the
button input.

It also sets specific ADC value ranges for each button, which will later be used to identify which
button has been pressed.

3. Button Debounce Processing

bool keyIsPressed = false;

19

The purpose of this approach is to filter out occasional noise or interference, improving the
accuracy and stability of the ADC readings.

Initializes serial communication,making it
easier to output debug information.

Sets the LED pins as outputs and the
button pin as an input.

Turns all LEDs off as the initial state.

4. Median Filter Function

5. Initialization Settings

int readMedianADC(int pin) {
 int readings[5];
 for (int i = 0; i < 5; i++) {
 readings[i] = analogRead(pin);
 delay(3);
 }
 for (int i = 0; i < 4; i++) {
 for (int j = i + 1; j < 5; j++) {
 if (readings[i] > readings[j]) {
 int temp = readings[i];
 readings[i] = readings[j];
 readings[j] = temp;
 }
 }
 }
 return readings[2];
}

void setup() {
 Serial.begin(115200);
 pinMode(Red_LED, OUTPUT);
 pinMode(Yellow_LED, OUTPUT);
 pinMode(Green_LED, OUTPUT);
 pinMode(Button_pin, INPUT);
 digitalWrite(Red_LED, LOW);
 digitalWrite(Yellow_LED, LOW);
 digitalWrite(Green_LED, LOW);
 Serial.println("System Ready.");
}

20

Calls the readMedianADC function to read and filter the ADC value from the button input.

Checks whether the ADC value falls within a predefined range to determine if a specific button has
been pressed.

When a new button press is detected:
• Uses the keyIsPressed flag to prevent repeated triggers from the same press.
• Executes the corresponding LED control logic based on the detected ADC range.
• Applies the ternary operator (eg: redOn ? HIGH : LOW) to set each LED’s state.
• Once the button is released, the debounce flag is reset, preparing the system to detect the next
valid button press.

6. Main Loop Logic

void loop() {
 int adcValue = readMedianADC(Button_pin);
 Serial.print("ADC: ");
 Serial.println(adcValue);
 bool inRange =
 (adcValue >= B0_L && adcValue <= B0_H) ||
 (adcValue >= B1_L && adcValue <= B1_H) ||
 (adcValue >= B2_L && adcValue <= B2_H) ||
 (adcValue >= B3_L && adcValue <= B3_H);
 if (inRange && !keyIsPressed) {
 keyIsPressed = true;
 if (adcValue >= B0_L && adcValue <= B0_H) {
 allOn = !allOn;
 redOn = yellowOn = greenOn = allOn;
 digitalWrite(Red_LED, redOn ? HIGH : LOW);
 digitalWrite(Yellow_LED, yellowOn ? HIGH : LOW);
 digitalWrite(Green_LED, greenOn ? HIGH : LOW);
 Serial.println("Button 0: Toggle ALL LEDs");
 }
 else if (adcValue >= B1_L && adcValue <= B1_H) {
 redOn = !redOn;
 digitalWrite(Red_LED, redOn ? HIGH : LOW);
 Serial.println("Button 1: Toggle RED");
 }
 }
 if (!inRange && keyIsPressed) {
 keyIsPressed = false;
 }
 delay(20);
}

21

After studying the code above, you can start modifying the functionality—such as using
button presses to control the LEDs in different ways. In upcoming lessons, we’ll also
explore how to work with even more hardware features available on the All-in-One
Starter Kit for Pico2.

You can refer to the flashing steps from Lesson 1 (page 10-15) as a guide.

Complete Code

Programming Steps

Lesson 3 - Breathing Led

Introduction
The slider module is a linear potentiometer with a maximum resistance of 10kΩ. Moving
the wiper from left to right linearly increases the output voltage from 0V up to VCC.In this
lesson, we'll use a potentiometer as the control input. By sampling its analog signal with
the microcontroller's ADC and applying PWM modulation, we'll create a smooth,
breathing-like LED brightness effect that responds to the slider's position. This provides
a clear demonstration of how analog signal control and digital signal processing work
together.

Hardware Used in This Lesson:

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

LED

Potentiometer
Linear

22

Operation Effect Diagram

This system uses a sliding rheostat (potentiometer) to adjust the output voltage of a
voltage divider circuit. The microcontroller’s ADC (12-bit resolution, range 0–4095) reads
this analog voltage and linearly maps it to an 8-bit PWM value (0–255). The PWM signal
is then output through the microcontroller’s GPIO pin. By adjusting the duty cycle, the
system controls the average current flowing through the LED: a higher duty cycle means
the LED stays on longer during each cycle, making it appear brighter; a lower duty cycle
shortens the on-time, dimming the LED.

• When I slide the potentiometer all the way to the left, the LED is at its dimmest.

• When I slide it all the way to the right, the LED reaches its maximum brightness.

Principle of Sliding Rheostat Controlling LED Brightness

LED

PotentiometerLinear

LED

PotentiometerLinear

23

The serial communication is initialized to allow relevant information to be printed during debugging.

The LED pins are set as output so that the Arduino can control them properly.

#define SLIDER_PIN 28
#define RED_LED_PIN 18
#define YELLOW_LED_PIN 20
#define GREEN_LED_PIN 19

1. Hardware Connections and Pin Definitions

2. Initialization Setup

3. Main Loop Logic

Key Explanations

void setup() {
 Serial.begin(115200);
 while (!Serial);
 pinMode(RED_LED_PIN, OUTPUT);
 pinMode(YELLOW_LED_PIN, OUTPUT);
 pinMode(GREEN_LED_PIN, OUTPUT);
 Serial.println("LED Brightness Control with Slider Ready.");
}

void loop() {
 int analogValue = analogRead(SLIDER_PIN);
 int pwmValue = map(analogValue, 0, 4095, 0, 255);
 analogWrite(RED_LED_PIN, pwmValue);
 analogWrite(YELLOW_LED_PIN, pwmValue);
 analogWrite(GREEN_LED_PIN, pwmValue);
 Serial.print("ADC: ");
 Serial.print(analogValue);
 Serial.print(" | PWM: ");
 Serial.println(pwmValue);
 delay(100);
}

The pins connected to the potentiometer and the
three LEDs are defined in the code.

It's important to make sure the LED pins are
assigned to PWM-capable GPIOs; otherwise,
brightness control via PWM won't work.

24

Reading the Analog Value:

• analogRead(SLIDER_PIN) reads the voltage from the potentiometer and converts it to a digital
value.

• On the RP2040, the ADC has 12-bit resolution, meaning it maps the 0–3.3V input range to values
between 0 and 4095.

Mapping the Value Range:

• The map() function is used to convert the 0–4095 ADC range to the 0–255 range required for
PWM.

• For example, if the ADC reads 2048, the mapped PWM value would be 127 — roughly 50%
brightness.

PWM Brightness Control:

• The analogWrite() function uses PWM to control the LED's brightness.

• A PWM value of 0 turns the LED off completely, while 255 sets it to full brightness.

Debug Output:

• The serial monitor prints both the raw ADC value and the mapped PWM value, making it easier to
observe how the system is behaving.

Delay Control:

• delay(100) ensures the loop runs every 100 milliseconds, which reduces serial output clutter and
prevents overly frequent readings from the potentiometer.

After studying the code above, you can start modifying the functionality—such as using
button presses to control the LEDs in different ways. In upcoming lessons, we’ll also
explore how to work with even more hardware features available on the All-in-One
Starter Kit for Pico2.

You can refer to the flashing steps from Lesson 1 (page 10-15) as a guide.

Complete Code

Programming Steps

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

25

Lesson 4 - 2.4 inch TFT Display

Introduction
In this chapter, we’ll use the TFT display module on the All-in-One Starter Kit for Pico2
to display text. The module communicates with the board via an SPI serial interface,
making both the hardware connection and software integration relatively straightfor-
ward—ideal for beginners and quick prototyping.

The TFT display screen receives pixel data and control instructions sent by the MCU
through the SPI bus. The ST7789 driver chip converts the received RGB data into a
progressive scan signal, and precisely controls the voltage of each liquid crystal cell
through the Source Driver and Gate Driver, thereby changing the light transmittance to
realize image display. The touch function reports coordinate data through the I2C
protocol by the FT5x06 chip to realize human-computer interaction. The backlight uses
an independent GPIO to control the brightness of the LED backlight source.

Once the program runs, the
TFT screen will follow this
display sequence:

• 1.First, it shows "HELLO
WORLD!"；

Working Principle of Dynamic Text Display on the
Display Screen

Hardware Used in This Lesson:

Operation Effect Diagram

HELLO WORLD!

TFT Display

26

#include <LovyanGFX.hpp>
#include <lvgl.h>

1. Display Driver and Library Imports

Key Explanations

LovyanGFX: This library handles the low-level drivers for the TFT display, such as SPI communi-
cation and pixel operations. It simplifies hardware control and makes screen management much
easier.

LVGL: A lightweight graphics library used for building user interfaces. In this code, it’s only
maintained by calling lv_timer_handler() in the loop() function to keep the library running properly.

• 2. After a 1-second delay, the text changes to "Bye Bye"；

• 3. One second later, the screen is cleared and the display turns off.

Bye Bye

27

Key Display Control Functions:

• fillScreen(color): Fills the entire

screen with the specified color (using

black effectively clears the screen).

• setCursor(x, y): Sets the position of

the top-left corner of the text; the origin

(0, 0) is at the top-left of the screen.

• setTextSize(n): Sets the text size to n

times the default font size (with n = 1

being the smallest).

2. Initialization and Display Logic

void setup() {
 Serial.begin(115200);
 gfx.init();
 pinMode(0, OUTPUT);
 digitalWrite(0, HIGH);
 gfx.setTextSize(2);
 gfx.setTextColor(TFT_WHITE);
 gfx.setCursor(60, 100);
 gfx.print("HELLO WORLD!");
 delay(1000);
 gfx.fillScreen(TFT_BLACK);
 gfx.setCursor(100, 100);
 gfx.print("Bye Bye");
 delay(1000);
 gfx.fillScreen(TFT_BLACK);
 digitalWrite(0, LOW);
}

LVGL Timer Handling:

• lv_timer_handler() is a required function call in the LVGL library. It manages internal
timers that handle animations, events, and other time-based operations. Even if your
interface doesn’t have dynamic effects, this function still needs to be called regularly to keep
the library functioning properly.

3. Main Loop (loop Function)

void loop() {
 lv_timer_handler();
 delay(10);
}

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

28

After studying the above code, you can control a 2.4-inch TFT display based on this
development board to achieve dynamic text display: After the program starts, it first
displays "HELLO WORLD!" at a specified position on the screen and pauses for 1
second, then clears the screen to display "Bye Bye" for another second, and finally
clears the screen and turns off the backlight. The code configures hardware information
such as SPI communication parameters and screen resolution through a custom LGFX
class, uses the display interface of the LovyanGFX library to control text output, and
integrates the LVGL library to maintain system operation. Once mastered, you can adjust
the text content, display position, font size or color, add more display phases, or combine
sensor data to achieve dynamic interactive display.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop
folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

In this lesson, we use an additional library (LovyanGFX-develop),so it’s important to
include it before running the code to avoid compilation errors.

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

29

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board.Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

30

Green Light Phase

• The green light stays on, and the TFT displays "Countdown: 30 seconds," with the
number decreasing by 1 each second.

Lesson 5 - Traffic Light

Introduction
In this lesson, we'll use an LED module to simulate the operation of real-world traffic
lights, combined with a TFT display to show a countdown timer. This hands-on project is
designed to help you understand the fundamentals of timing control and hardware
interaction in embedded systems.

This traffic light system is based on a microcontroller (MCU) that directly drives the red,
yellow, and green LEDs through GPIO pins. Each LED is connected in series with a
current-limiting resistor to ensure the operating current stays within a safe range. The
system uses a finite state machine (FSM) to implement a three-phase cycle: the green
light stays on for 30 seconds, the yellow light stays on for 3 seconds, and the red light
stays on for 20 seconds, with precise timing managed by a hardware timer. The
countdown timer is displayed in real-time on an ST7789 TFT screen (driven by an SPI
interface with an 80 MHz clock). During the last 5 seconds, the currently active LED
flashes every 500ms as a warning. The entire system is designed with non-blocking
programming to ensure that the coordination of peripherals (LEDs, display) does not
affect real-time performance. Additionally, hardware debounce technology ensures the
reliability of touch detection.

Traffic Light System Working Principle

Hardware Used in This Lesson:

Operation Effect Diagram

TFT Display

LED

34

• When the countdown reaches 5 seconds, the green light begins to flash.

Yellow Light Phase
• The green light turns off, the yellow light stays on, and the TFT displays "Countdown:
3 seconds."
• After 3 seconds, the yellow light turns off and switches to the red light.

Red Light Phase
• The red light stays on, and the TFT displays "Countdown: 20 seconds."
• When the countdown reaches 5 seconds, the red light begins to flash, and after 20
seconds, the cycle returns to the green light phase.

Countdown: 1s

Countdown: 0s

Countdown: 0s

32

if (remainingTime == 0) {
 digitalWrite(Green_LED, LOW);
 digitalWrite(Yellow_LED, LOW);
 digitalWrite(Red_LED, LOW);
 switch(currentStage) {
 case GREEN_STAGE:
 currentStage = YELLOW_STAGE;
 remainingTime = 3;
 digitalWrite(Yellow_LED, HIGH);
 break;
 case YELLOW_STAGE:
 currentStage = RED_STAGE;
 remainingTime = 20;
 digitalWrite(Red_LED, HIGH);
 break;
 case RED_STAGE:
 currentStage = GREEN_STAGE;
 remainingTime = 30;
 digitalWrite(Green_LED, HIGH);
 break;
 }
}

1. Traffic Light Phase Switching Logic

Key Explanations

Phase Switching: This part of the
code implements the functionality of
switching the traffic light from one
phase to another.

• When remainingTime (the
remaining time of the current phase)
reaches 0, it indicates the end of the
current phase.

• First, all LEDs are turned off, and
then, based on the value of
currentStage, the system switches to
the next phase.

LED Control: When switching to a new phase, the corresponding LED for that phase is turned
on, and the other LEDs are turned off.

• During the green light phase, the green LED is turned on.

• During the yellow light phase, the yellow LED is turned on.

• Each phase has a fixed duration:

• The green light phase (GREEN_STAGE) lasts for 30 seconds.

• The yellow light phase (YELLOW_STAGE) lasts for 3 seconds.

• The red light phase (RED_STAGE) lasts for 20 seconds.

33

Time Update:
This part of the code implements the functionality of updating the countdown every second.
• The millis() function is used to get the current time in milliseconds.
• If 1000 milliseconds (i.e., 1 second) have passed since the last countdown update, remaining-
Time is decreased by 1, and lastUpdate is updated to the current time.

Screen Display Update:
• The gfx.fillRect() function is used to clear the countdown number area on the screen (to avoid
clearing the "Countdown:" text).
• The text color is set to white, and the cursor is moved to the starting position of the countdown
number area.
• The gfx.printf() function is used to print the updated countdown value in a formatted manner (eg:
"29s").

2. Countdown Display Logic

3. Last 5 Seconds Flashing Logic

if (now - lastUpdate >= 1000) {
 remainingTime--;
 lastUpdate = now;
 gfx.fillRect(TEXT_AREA_X, TEXT_AREA_Y, TEXT_AREA_WIDTH,
TEXT_AREA_HEIGHT, TFT_BLACK);
 gfx.setTextColor(TFT_WHITE);
 gfx.setCursor(TEXT_AREA_X, TEXT_AREA_Y);
 gfx.printf("%2ds", remainingTime);
}

if (remainingTime > 0 && remainingTime <= 5) {
 if (now - lastBlink >= 500) {
 blinkState = !blinkState;
 lastBlink = now;
 switch(currentStage) {
 case GREEN_STAGE:
 digitalWrite(Green_LED, blinkState);
 break;
 case RED_STAGE:
 digitalWrite(Red_LED, blinkState);
 break;
 }
 }
}

34

Flashing Condition: The flashing logic is triggered when the remaining time is greater than 0
and less than or equal to 5 seconds.

Flashing Frequency: The LED state (on or off) switches every 500 milliseconds (0.5 seconds).

• The millis() function is used to get the current time and compare it with lastBlink (the last blink
time). If the time difference is greater than or equal to 500 milliseconds, the blinkState (flashing
state) is toggled.
• lastBlink is updated to the current time.

LED Control:
• During the green light phase (GREEN_STAGE), the green LED will flash.
• During the red light phase (RED_STAGE), the red LED will flash.

Screen Object: LGFX gfx; A screen object gfx is created to control the screen display.
Screen Size: The screen width (screenWidth) and height (screenHeight) are defined as 320
pixels and 240 pixels, respectively

Screen Initialization:
• The gfx.init() function is called to initialize the screen.
• Pin 0 is set to output mode, and the screen backlight is turned on by calling digitalWrite(0, HIGH);.

Pin Mode Setup: The pinMode() function is used to set the pins for the red, yellow, and green
LEDs to output mode.
• The Red_LED (red LED) pin is set to 18.
• The Yellow_LED (yellow LED) pin is set to 20.
• The Green_LED (green LED) pin is set to 19.

4. Screen Initialization and Display Configuration

LGFX gfx;
static const uint16_t screenWidth = 320;
static const uint16_t screenHeight = 240;

gfx.init();
pinMode(0, OUTPUT);
digitalWrite(0, HIGH);

5. Initialization Settings

pinMode(Red_LED, OUTPUT);
pinMode(Yellow_LED, OUTPUT);
pinMode(Green_LED, OUTPUT);

35

Text Area Position and Size: The position and size of the countdown number display area are
defined.
• TEXT_AREA_X and TEXT_AREA_Y represent the X and Y coordinates of the text area,
respectively.
• TEXT_AREA_WIDTH and TEXT_AREA_HEIGHT represent the width and height of the text
area, respectively.

When displaying the countdown number, only the contents of this area are cleared to avoid
clearing other parts (such as the "Countdown:" text).

Time Retrieval: In the loop() function, the millis() function is used to get the current time in
milliseconds, which is used to determine whether the countdown needs to be updated or the phase
needs to be switched.

Minimum Delay: A delay(10); is added at the end of the loop to ensure the program does not run
too fast and to prevent interference with screen refresh and other operations.

6. Countdown Text Display Area Configuration

const int TEXT_AREA_X = 210;
const int TEXT_AREA_Y = 100;
const int TEXT_AREA_WIDTH = 60;
const int TEXT_AREA_HEIGHT = 30;

7. Time Update and Logic Processing in the Main Loop

uint32_t now = millis();
delay(10);

After studying the code above, you can adjust the functionality as needed. The overall
code implements a traffic light control system based on the Arduino platform, which
simulates traffic light changes by controlling different colored LEDs (red, yellow, green)
and displays the current countdown time of the traffic light on an LCD screen. When the
green light is on, the countdown is displayed. After the yellow light stays on for 3
seconds, it switches to the red light. When the red light is on, the countdown is
displayed. In the last 5 seconds, the green or red light will blink to alert.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

36

In this lesson, we use an additional library (LovyanGFX-develop),so it’s important to
include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop
folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

37

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

38

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

Lesson 6 - Intelligent Street Light

Introduction
This chapter will provide a detailed explanation of how to collect brightness data from
the light module, and how to implement intelligent on/off control of the LED based on the
collected data. By setting a reasonable brightness threshold mechanism, the system
can automatically control the on/off state of the LED based on ambient light intensity,
avoiding unnecessary lighting, effectively reducing energy consumption, and achieving
the goal of energy conservation and efficiency improvement.

This system uses a digital light intensity sensor (such as the BH1750) to collect ambient
light intensity data and automatically control the on/off state of the LED based on the
collected light intensity. The system uses the I2C communication protocol to interact with
the light sensor through the microcontroller, obtaining real-time ambient light illuminance.
In terms of hardware, the system connects the sensor to the microcontroller via the I2C
bus, periodically reads the sensor data, and determines whether the ambient light
intensity meets the criteria for activating the LED based on a set threshold. If the
ambient light intensity falls below the set threshold (eg: 100lx), the system will turn on
the LED, otherwise, it will turn off. The system uses low-power light sensors (such as the
BH1750), with a working current of only 0.12mA, enabling long-term stable operation.
Additionally, the system implements a non-blocking delay mechanism to ensure
sampling real-time accuracy and avoid interference with other functions due to overly
fast execution. This design enables the automatic adjustment of the LED’s on/off state
based on ambient light intensity, effectively saving energy and ensuring lighting is only
on when needed.

Working Principle of Light-Controlled LED System

Hardware Used in This Lesson:

LED

Light
Sensor

39

I2C Communication:
Communication between the sensor and Arduino is achieved through two wires (SDA for
data, SCL for clock), which is a commonly used low-speed serial communication protocol.

Sensor Address:
Each I2C device has a unique address (0x5C is the default address for the BH1750), which
is used by the Arduino to identify the device.

• Simulating a Dark Environment:

By covering the top of the light
sensor with your hand, the ambient
light intensity decreases, and the
red LED will automatically turn on.

• Simulating a Light Environment:

When you remove your hand, the
ambient light intensity increases,
and the red LED will automatically
turn off.

Operation Effect Diagram

#define I2C_SDA 2
#define I2C_SCL 3
#define Red_LED 18
BH1750 lightMeter(0x5c);

1. Hardware Connections and Library Inclusion

Key Explanations

Red LED

Red LED

40

Sensor Initialization Mode: CONTINUOUS_HIGH_RES_MODE means the sensor operates in

continuous high-resolution mode, with a measurement range of 1-65535 lux.

Error Detection: The initialization of the sensor is checked using an if statement to ensure it is

successful, which is helpful for debugging.

2. Initialization Settings

3. Last 5 Seconds Flashing Logic

void setup() {
 Serial.begin(9600);
 delay(100);
 Wire1.setSDA(I2C_SDA);
 Wire1.setSCL(I2C_SCL);
 Wire1.begin();
 if(lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c,
&Wire1)) {
 Serial.println("BH1750 sensor initialized.");
 } else {
 Serial.println("Failed to initialize BH1750 sensor.");
 }
 pinMode(Red_LED, OUTPUT);
}

void loop() {
 if (lightMeter.measurementReady(true)) {
 float lux = lightMeter.readLightLevel();
 Serial.print("Current light level: ");
 Serial.print(lux);
 Serial.println(" lx");
 if (lux < 100) {
 digitalWrite(Red_LED, HIGH);
 } else {
 digitalWrite(Red_LED, LOW);
 }
 }
 delay(200);
}

41

Measurement Readiness Check: measurementReady(true) will block the program until the
sensor completes a measurement, ensuring the validity of the data.

Light Intensity Reading: readLightLevel() returns a floating-point value of light intensity, for
example, 50.5 lx represents 50.5 lux.

LED Control Logic: The LED on/off state is controlled through a simple condition check
(lux < 100), using digitalWrite to output high/low voltage.

After learning the above code, you can modify the functionality to create an intelligent
lighting control system based on a light sensor. By real-time detection of ambient light
intensity and comparing it with a set threshold, the system can automatically control the
on/off state of the LED, achieving energy-saving effects.

In this lesson, we use an additional library (BH1750),so it’s important to include it before
running the code to avoid compilation errors.

Complete Code

1. Download the Library

• Click the link below:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the BH1750 folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

42

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board.Make sure the compilation completes without errors
before running the program.

43

Lesson 7 - Ultrasonic Ranging Display

Introduction
In this section, you’ll learn how to use an ultrasonic sensor module to measure the
distance between the sensor and an object in front of it. You’ll build a simple ultrasonic
distance meter that displays the measured values in real time on an LCD screen. This
lesson covers the basic principle of ultrasonic distance measurement, hardware
connections between the sensor and the display, and how to write code to collect data
and visualize the results.

This ultrasonic distance display system uses the HC-SR04 module for non-contact
distance measurement. A 40kHz ultrasonic pulse is triggered via GP9, and the echo is
received through GP8. The microcontroller calculates the time difference to determine
the distance (with an effective range of 2.8–400 cm). Every 500 ms, the system collects
three measurements and applies median filtering to ensure stable readings. The filtered
distance data is transmitted to an ST7789 LCD screen over an 80 MHz SPI bus (SCLK =
GP6, MOSI = GP7) and displayed in real time at a resolution of 240×320.
Hardware-wise, the ultrasonic module operates at 5V, and its Echo signal is level-shifted
to be compatible with the 3.3V system. The display backlight is directly controlled by
GPIO0 and configured with a proper refresh rate to prevent flicker.A digital filtering
algorithm is integrated to suppress environmental noise, and if invalid data is detected,
the screen displays an “Out of range” warning. The entire measurement process uses a
non-blocking design to maintain real-time responsiveness.

Working Principle of the Ultrasonic Distance Display System

Hardware Used in This Lesson:

TFT Display

Ultrasonic Ranging Sensor

44

The trigger and echo pins for the ultrasonic sensor are defined, and an instance of the
sensor is created.

The trigger and echo pins for the ultrasonic sensor are defined, and an instance of the
sensor is created.The UltraSonicDistanceSensor class, provided by a library, simplifies
working with ultrasonic sensors.By specifying the trigger and echo pins, you can instantiate
a sensor object to begin distance measurements.

Operation Effect Diagram

const byte triggerPin = 9;
const byte echoPin = 8;
UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin);

1. Ultrasonic Sensor Initialization and Configuration

Key Explanations

Once the program starts running,
the LCD screen will continuously
update to show the real-time
distance measured by the
ultrasonic sensor.

As you move a flat object in
front of the ultrasonic module,
the distance value displayed
on the screen will change
dynamically.

Distance: 14.28cm

Distance: 3.5cm

8.2cm

2.2cm

45

To improve measurement stability, the code takes multiple readings and averages them to
produce a more accurate result.

The measureDistanceCm function is used to measure distance in centimeters.To reduce errors,
the code performs 3 measurements and checks if each value falls within a valid range (greater
than 0 and less than 500 cm) using if (d > 0 && d < 500).。If a reading is valid, it is added to the
total, and the count of valid readings (validCount) is incremented.Finally, the average is calculated
using total / validCount. If no valid readings were obtained, -1 is returned to indicate a failed
measurement.

2. Obtaining Stable Distance Readings

3. Displaying the Distance Value on the Screen

float getStableDistance() {
 float total = 0;
 int validCount = 0;
 for (int i = 0; i < 3; i++) {
 float d = distanceSensor.measureDistanceCm();
 if (d > 0 && d < 500) {
 total += d;
 validCount++;
 }
 delay(20);
 }
 if (validCount == 0) return -1;
 return total / validCount;
}

gfx.fillRect(TEXT_AREA_X, TEXT_AREA_Y, TEXT_AREA_WIDTH + 50,
TEXT_AREA_HEIGHT, TFT_BLACK);
gfx.setTextColor(TFT_WHITE);
gfx.setCursor(TEXT_AREA_X, TEXT_AREA_Y);
if (distance > 0) {
 gfx.printf("%.2f cm", distance);
} else {
 gfx.print("Out of range");
}

46

This section of code handles displaying the measured distance on the screen and clearing the old
value with each update.

The gfx.fillRect function clears a rectangular area of the screen to prevent overlapping digits.，
gfx.setTextColor sets the text color, gfx.setCursor defines the text position, and gfx.printf formats
and prints the distance value.The format %.2f ensures the number is displayed as a float with two
decimal places.If the measured distance is invalid (less than or equal to 0), the message “Out of
range” is displayed instead.

The update frequency of the distance value is controlled by a timer to prevent screen flickering or
high CPU usage caused by overly frequent updates.

UPDATE_INTERVAL defines the update interval time (500 milliseconds). The condition current-
Time - lastUpdateTime >= UPDATE_INTERVAL checks whether it's time to update. If it's time to
update, the getStableDistance function is called to obtain the current stable distance and update
the screen display.lastUpdateTime stores the last update timestamp and is used to determine when
the next update should occur.

4. Timed Distance Display Update

if (currentTime - lastUpdateTime >= UPDATE_INTERVAL) {
 lastUpdateTime = currentTime;
 float distance = getStableDistance();
 gfx.fillRect(TEXT_AREA_X, TEXT_AREA_Y, TEXT_AREA_WIDTH + 50,
TEXT_AREA_HEIGHT, TFT_BLACK);
 gfx.setTextColor(TFT_WHITE);
 gfx.setCursor(TEXT_AREA_X, TEXT_AREA_Y);
 if (distance > 0) {
 gfx.printf("%.2f cm", distance);
 } else {
 gfx.print("Out of range");
 }
 }

After studying the above code, you can modify its functions to implement an ultrasonic
distance measurement system that displays the measured distance on the screen in real
time. It periodically (every 500 milliseconds) obtains stable distance data and dynamical-
ly updates the display, ensuring both real-time responsiveness and display stability.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

47

In this lesson, we use two additional libraries: LovyanGFX-develop and HCSR04.,so it’s
important to include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop
and HCSR04. folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

48

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

49

Lesson 8 - Obstacle Close Range Alarm

Introduction
In this chapter, we will explore the application of the ultrasonic module and its coordinat-
ed control with other modules. By reading distance data from the ultrasonic sensor, we
will implement a threshold-based control logic for a vibration motor: when an obstacle is
detected within 30 cm, the vibration motor is activated as an alert; when the distance is
30 cm or more, the motor is turned off, indicating a safe state. This mechanism can be
used to implement a basic ultrasonic obstacle avoidance function.

The ultrasonic ranging anti-collision system realizes obstacle detection through the
HC-SR04 module. It triggers 40kHz ultrasonic pulses via GP9, receives echo signals
through GP8, and the MCU calculates the time difference to convert it into a distance
value. The system performs measurements every 100ms. When an obstacle within a
30cm range is detected, GP15 outputs a PWM signal to drive the vibration motor for
tactile alarm.In hardware design, the 5V-powered ultrasonic module is paired with a 3.3V
level conversion circuit. The vibration motor drive uses a MOSFET transistor to ensure
sufficient current driving capability (typical operating current: 60mA). The system
integrates a digital filtering algorithm to eliminate environmental interference, automati-
cally turns off the motor output in case of anomalies, and outputs distance data and
system status in real time via a serial port. It adopts non-blocking programming design to
ensure real-time response performance, while reducing system power consumption
through appropriate delay control.

Working Principle of Ultrasonic Ranging Anti-Collision System

Hardware Used in This Lesson:

Ultrasonic Ranging Sensor

Vibration Motor

50

• Simulating Obstacle Approaching:
Slowly move a hand or object closer to
the ultrasonic sensor (distance < 30 cm).
The vibration motor should activate,
indicating the presence of an obstacle.

• Simulating Obstacle Moving Away:
Remove the object (distance ≥ 30 cm).
The vibration motor should stop,
indicating a safe zone.

Operation Effect Diagram

Library Inclusion: #include <HCSR04.h> includes the ultrasonic sensor library, which
provides convenient functions for distance measurement.

Pin Definitions:
• triggerPin is connected to the sensor's trigger pin and used to initiate the measurement.
• echoPin is connected to the sensor's echo pin and used to receive the reflected ultrasonic
signal.

Sensor Object Creation: An ultrasonic sensor object named distanceSensor is created
using UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin); for subsequent
distance measurements.

#include <HCSR04.h>
const byte triggerPin = 9;
const byte echoPin = 8;
UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin);

1. Ultrasonic Sensor Initialization and Configuration

Key Explanations

51

Update Interval: UPDATE_INTERVAL defines the time interval between two distance measure-
ments, set to 100 milliseconds here.

Time Variable: lastUpdateTime is used to record the time of the last distance update.

Time Check: In the loop() function, millis() is used to get the current time (currentTime), and it
checks whether the time since the last update has reached UPDATE_INTERVAL.

Distance Measurement: If the interval condition is met, the function distanceSensor.measureDis-
tanceCm() is called to measure the distance in centimeters.

2. Distance Measurement and Update Logic

3. Distance Validation and Logic Handling

const unsigned long UPDATE_INTERVAL = 100;
unsigned long lastUpdateTime = 0;
if (currentTime - lastUpdateTime >= UPDATE_INTERVAL) {
 lastUpdateTime = currentTime;
 float distance = distanceSensor.measureDistanceCm();
}

Validation Check: If the measured distance is greater than 0 cm, the measurement is considered
valid.

Distance Display: The measured distance is printed via the serial monitor.

if (distance > 0) {
 Serial.print("Distance: ");
 Serial.print(distance);
 Serial.println(" cm");
 if (distance < 30.0) {
 digitalWrite(vibratePin, HIGH);
 Serial.println("Obstacle detected! Vibration motor ON.");
 } else {
 digitalWrite(vibratePin, LOW);
 Serial.println("Safe distance. Vibration motor OFF.");
 }
} else {
 digitalWrite(vibratePin, LOW);
 Serial.println("Out of range or measurement error.");
}

52

Logic Processing:

• If the distance is less than 30 cm, it indicates an obstacle is detected. The vibration motor is
turned on (digitalWrite(vibratePin, HIGH)), and the message “Obstacle detected! Vibration motor
ON.” is printed via serial.

• If the distance is greater than or equal to 30 cm, it indicates a safe distance. The motor is turned
off (digitalWrite(vibratePin, LOW)), and the message “Safe distance. Vibration motor OFF.” is
printed via serial.

Error Handling: If the measured distance is less than or equal to 0 cm, it indicates an invalid or
out-of-range measurement. The motor is turned off and an error message is printed via serial.

Pin Definition: vibratePin defines the pin connected to the vibration motor.

Pin Mode Configuration: In the setup() function, pinMode(vibratePin, OUTPUT) sets the pin
mode to output.

Initial State: The motor is turned off by default using digitalWrite(vibratePin, LOW).

Serial Initialization:
• Serial.begin(9600) initializes serial communication with a baud rate of 9600.

Waiting for Connection: while (!Serial) waits for the serial port to connect (required on some
boards).

Startup Message: Serial.println("System ready. Starting distance monitoring...") prints a startup
message to indicate the system is ready.

4. Vibration Motor Control

const int vibratePin = 15;
pinMode(vibratePin, OUTPUT);
digitalWrite(vibratePin, LOW);

5. Serial Communication Initialization

Serial.begin(9600);
Serial.println("System ready. Starting distance monitoring...");

6. Time Update and Logic Handling in the Main Loop

unsigned long currentTime = millis();
delay(10);

53

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

Time Acquisition: In the loop() function, millis() is used to get the current time (in milliseconds) to
determine whether it's time to perform a new distance measurement and control logic.

Minimum Delay: Adding delay(10); at the end of the loop() helps prevent excessively high loop
frequency, reducing CPU load and avoiding unnecessary processing.

After completing the code implementation above, you've successfully built a proximity
alert system using an ultrasonic sensor. This system continuously monitors the distance
to obstacles ahead—triggering a vibration motor alarm when objects come within 30 cm,
while maintaining a "safe" status at greater distances. It also incorporates error handling
and timed detection mechanisms for reliable operation.

Complete Code

In this lesson, we use an additional library (HCSR04),so it’s important to include it before
running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the HCSR04 folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

54

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

55

Lesson 9 - Brightness Display

Introduction
In this chapter, you'll learn how to adjust the brightness of an LED using a slide
potentiometer, dividing the brightness into 10 levels. By reading changes in the
potentiometer's resistance, you'll control the output of a PWM (Pulse Width Modulation)
signal, allowing for smooth, linear brightness adjustment and level-based display.

This intelligent dimming system uses a sliding potentiometer as the input signal. The
MCU’s 12-bit ADC module converts the 0–900 mV analog voltage into a digital signal,
which is then mapped to a 0–255 range PWM duty cycle. This signal drives RGB LEDs
connected to three GPIO pins to achieve smooth brightness adjustment. An 80 MHz SPI
bus is used to control a 240×320 ST7789 display in real time to show the brightness
level.The hardware includes a voltage divider input circuit, PWM driving circuits (with
220 Ω current-limiting resistors for each LED), SPI display interface, and GPIO-con-
trolled backlight. The system uses a non-blocking architecture to sample and update
every 100 ms. With the help of the LVGL graphics library, efficient partial screen
refreshing is achieved. Digital filtering ensures signal stability and enhances the
system's responsiveness and reliability.

Working Principle of the PWM Dimming System

Hardware Used in This Lesson:

LED

Linear
Potentiometer

TFT Display

56

Slide the potentiometer and observe both the LED brightness change and the on-screen
brightness level display.

• 1. Set to 10 (Maximum Brightness):
Slide the potentiometer and observe
both the LED brightness change and
the on-screen brightness level display.

• 2. Set to 4 (Medium Brightness):
Move the potentiometer to the
middle position.The LED will glow at
a moderate level, and the screen will
show: "Brightness: 4".

• 3. Set to 0 (Off):
Slide the potentiometer completely to
the left.The LED will turn off, and the
screen will indicate: "Brightness: 0".

Operation Effect Diagram

class LGFX : public lgfx::LGFX_Device { ... }
LGFX gfx;

1. Display Initialization and Configuration

Key Explanations

Brightness: 4

Brightness: 10

Brightness: 0

57

Custom Display Class: A custom LGFX class is defined, inheriting from lgfx::LGFX_Device, to
configure display hardware parameters (eg: SPI bus, touchscreen, etc.).

Display Instance: A gfx object is instantiated to control the display.

Display Initialization: In the setup() function, gfx.init() is called to initialize the display. The
backlight pin (Pin 0) is set to output mode, and the backlight is turned on.

Screen Clear & Text Setup: The screen is cleared using gfx.fillScreen(TFT_BLACK). Text size
and color are configured, and "Brightness:" is printed on the screen.

2. Reading the Potentiometer (Analog Slider)

Pin Definition: SLIDER_PIN is defined as the analog input pin connected to the potentiometer
(Pin 28).

Reading Analog Values: The potentiometer's analog value is read using analogRead(SLID-
ER_PIN), typically returning a range of 0 to 4095 (for 12-bit ADC resolution).

Pin Definitions: Pins connected to the red, yellow, and green LEDs are defined for PWM output.

PWM Output: The mapped PWM value (0–255) is sent to the LED pins using analogWrite(),
controlling LED brightness.

int analogValue = analogRead(SLIDER_PIN);

PWM Value Mapping: The potentiometer’s analog input range (0–900) is mapped to a PWM
output range (0–255) to control LED brightness.

Brightness Level Mapping: The analog value is also converted to an integer brightness level
(0–10) for on-screen display.

Value Clamping: The constrain() function ensures mapped values stay within valid ranges: PWM
output (0–255) and brightness level (0–10).

3. Mapping Analog Values to PWM & Brightness Levels

int pwmValue = map(analogValue, 0, 900, 0, 255);
int level = map(analogValue, 0, 900, 0, 10);

4. LED PWM Control

analogWrite(RED_LED_PIN, pwmValue);
analogWrite(YELLOW_LED_PIN, pwmValue);
analogWrite(GREEN_LED_PIN, pwmValue);

58

Brightness Level Change Detection: The display updates only if the current brightness level
differs from the previously recorded lastLevel.

Clearing Screen & Setting Cursor: gfx.fillRect() clears the previous brightness level display
area.The cursor position is reset for new text output.

Displaying Brightness Level: The text color is set to green, and the new brightness level is printed.

5. Displaying Brightness Level on Screen

if (level != lastLevel) {
 lastLevel = level;
 gfx.fillRect(240, 100, 60, 30, TFT_BLACK);
 gfx.setCursor(240, 100);
 gfx.setTextColor(TFT_GREEN);
 gfx.print(level);
}

After learning the above code, a brightness adjustment system based on a slide
potentiometer is implemented. The system reads the analog value of the slide potenti-
ometer, maps it to a brightness level from 0 to 10, controls the brightness of red, yellow,
and green tri-color LEDs, and real-time displays the brightness level on an ST7789
display, while supporting serial port debugging information output.The code implements
an LED brightness adjustment system based on a slide potentiometer. By integrating
analog signal acquisition and PWM control technology, the brightness is divided into 10
levels, which are real-timely displayed on the TFT display. It also supports touch
interaction functions.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

59

In this lesson, we use an additional library (LovyanGFX-develop), so it’s important to
include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop
and LovyanGFX-develop folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

60

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

61

Lesson 10 - Temperature & Humidity
Detecting System

Introduction
This chapter will focus on the usage of temperature and humidity sensor modules,
including reading sensor data and real-time displaying temperature and humidity values
on the screen. Through practice, you will master the I2C or single-wire communication
protocol, as well as the interactive logic of data acquisition and display.

The system is based on an SPI-driven 240×320 ST7789 LCD with an FT5x06
touchscreen, and connects to a DHT20 temperature-humidity sensor via I2C (Wire1).
The main controller (eg: ESP32) reads temperature and humidity data once every 1
second. After processing by the LovyanGFX library, the data is centrally displayed on
the screen (humidity in blue, temperature in red). The SPI is configured for 80MHz
high-speed communication, while I2C operates at 400kHz. The touchscreen is
controlled via INT/RST pins. GPIO0 drives the backlight, and non-blocking timing
(millis()) ensures real-time refresh to avoid screen afterimages.

Working Principle of Temperature and Humidity
Monitoring Display System

Hardware Used in This Lesson:

After Starting the Program,The system will continuously collect data from the tempera-
ture-humidity sensor and display it on the screen in real time.

Operation Effect Diagram

TFT Display

temperature and humidity
sensor module

62

Custom Display Class: This is
the constructor of the custom
LGFX class, serving as the core
for initializing the entire
LovyanGFX screen.

cfg.spi_host = 0;: Selects VSPI
(SPI0 of ESP32)

cfg.freq_write = 80000000;: Sets
high-frequency write speed
(80MHz) to enhance screen refresh
rate.

cfg.pin_*: Binds specific screen
pins (SCLK, MOSI, DC, etc.).

• 1. Normal Environment Observation：
Place the sensor in a normal room-tempera-
ture environment and observe the tempera-
ture and humidity data displayed on the
screen.

• 2. Gently press your finger against
the surface of the DHT20 tempera-
ture-humidity sensor and observe the
data changes on the display.

LGFX(void) {
 auto cfg = _bus_instance.config();
 cfg.spi_host = 0;
 cfg.spi_mode = 0;
 cfg.freq_write = 80000000;
 cfg.pin_sclk = 6;
 cfg.pin_mosi = 7;
 cfg.pin_miso = -1;
 cfg.pin_dc = 16;
 _bus_instance.config(cfg);
 _panel_instance.setBus(&_bus_instance);
 ...
 _panel_instance.setTouch(&_touch_instance);
 setPanel(&_panel_instance);
}

1. LGFX Class Constructor

Key Explanations

Humidity:
41.3%

Temperature:
29.5 C

Humidity:
43.6%

Temperature:
30.8 C

63

_panel_instance.setBus(...): Binds the SPI bus to the screen panel.

_panel_instance.setTouch(...): Mounts the touchscreen driver to the panel.

setPanel(...): Finally applies the configuration to LGFX_Device.

Function: Constructs and initializes the hardware abstraction layer for SPI display and
touchscreen, serving as the foundation for using the LovyanGFX library.

2. Sensor and I2C Initialization

3. Timed Reading and Screen Update

This section is responsible for initializing the second I2C bus Wire1 for connecting the DHT20
sensor.

Wire1.setSDA(2); and setSCL(3);: Assigns SDA and SCL pins to GPIO2 and GPIO3 to avoid
conflicts with the main I2C bus (eg: the I2C used by the touchscreen).

DHT.begin();: Invokes the initialization function of the DHT20 library.

Function: Enables the I2C communication channel with DHT20 to facilitate reading temperature
and humidity data.

This is the core part of the loop():

• Execute DHT.read() every 1000ms (1
second).

• If the reading is successful
(DHT20_OK), clear the screen and
display the latest temperature and
humidity data.

• Use gfx.printf() combined with
setCursor() to center the data display.

Function: Implement the real-time
reading of temperature/humidity and the
refresh logic for graphical display.

Wire1.setSDA(2);
Wire1.setSCL(3);
Wire1.begin();
DHT.begin();

if (currentMillis - preMillis >= interval) {
 if (millis() - DHT.lastRead() >= 1000) {
 int status = DHT.read();
 if (status == DHT20_OK) {
 gfx.fillScreen(TFT_BLACK);
 ...
 gfx.printf("%.1f %%", humidity);
 gfx.printf("%.1f C", temperature);
 }
 }
 preMillis = currentMillis;
}

64

centerX is the horizontal midpoint coordinate of the screen.
6 * 3 * N is the method to estimate text width:
• Each character is approximately 6 pixels wide (default font).
• 3 is the text magnification factor (set via setTextSize(3)).
• N is the number of characters (estimated based on actual content).
Function: Achieve horizontally centered text alignment by manually calculating the starting
coordinates.

4. Centered Display Technique

int centerX = screenWidth / 2;
gfx.setCursor(centerX - 6 * 3 * 5, 60);
gfx.print("Humidity:");
gfx.setCursor(centerX - 6 * 3 * 2, 100);
gfx.printf("%.1f %%", humidity);

After learning the above code, an Arduino-based environmental monitoring system is
implemented. The system uses a DHT20 sensor to collect real-time temperature and
humidity data, which is visually displayed on an ST7789 screen. The system updates
data once per second, presenting the current ambient humidity (in percentage) and
temperature (in Celsius) in a clear and readable manner, with different colors used to
distinguish various types of data.

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

Complete Code

65

In this lesson, we used two additional library files: DHT20 and LovyanGFX-develop.,so
it’s important to include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the DHT20 and LovyanG-
FX-develop folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

66

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

67

Lesson 11 - Servo Control

Introduction
This section will elaborate on the control method of the servo motor module, realizing
the reciprocating swing of the servo within the range of 0 to 180 degrees by configuring
PWM control signals. During the course operation, the servo will complete a periodic
motion of rotating from 0 degrees to 180 degrees and then reversing back to 0 degrees
according to the preset logic.

The system uses the Arduino Servo library to drive a servo motor connected to pin GP13,
employing PWM signals to control the rotation angle. The pulse width is set to range from
450 to 2520 microseconds, corresponding to a mechanical rotation of 0-180 degrees.
The main loop implements a progressive angle adjustment, incrementing or decrement-
ing by 1 degree every 15 milliseconds to achieve smooth reciprocating motion.

Working Principle of Servo Motor Control

Hardware Used in This Lesson:

• Forward Rotation:

After the program starts, the servo motor will slowly rotate from the 0-degree position to
the 180-degree position.

Operation Effect Diagram

Servo Motor

68

#include <Servo.h>: Loads the official Arduino Servo library, which encapsulates the PWM
generation and timing control functions required for communicating with servo motors.

Servo myservo;: Instantiates a Servo object named myservo in the global scope. Subsequent
operations on myservo (such as attach() and write()) will be mapped to specific hardware pins and
signals of the servo motor.

• Reverse Rotation:

Upon reaching the 180-degree
position, the servo motor will
automatically reverse its rotation
and return to the 0-degree position,
forming a continuous reciprocating
swing cycle.

#include <Servo.h>
Servo myservo;

1. LGFX Class Constructor

Key Explanations

myservo.attach(pin, minPulse, maxPulse);

• pin=13: Connect the servo signal wire to Arduino digital pin 13.

• 450 (minimum pulse width): Unit is microseconds (μs). The pulse width for 0° of a standard servo
is ~500μs; adjusting to 450μs ensures the servo can reach or slightly exceed the minimum angle.

• 2520 (maximum pulse width): Corresponds to the servo's maximum angle (180°). The standard
value is ~2500μs; setting to 2520μs ensures the servo can reach or slightly exceed the maximum
angle.

Function: By specifying minPulse/maxPulse, calibrate the 0° and 180° output positions to the
servo's actual physical limits. If these parameters are omitted, the library uses default values (544
μs-2400μs), which may need adjustment for servos with different travel ranges.

void setup() {
 myservo.attach(13, 450, 2520);
}

2. Binding the Servo to a Pin and Setting Pulse Width Range in setup()

69

3. Forward and Reverse Sweep For Loops in loop()

1. for (int pos = 0; pos <= 180; pos++)

• This loop increments pos from 0 to 180 in steps of 1°. Combined with myservo.write(pos), it
enables the servo to "smoothly rotate from the minimum angle to the maximum angle".

• myservo.write(pos): Passes the current angle value (in degrees) to the Servo library, which
converts it to the corresponding pulse width signal (450μs→0°, 2520μs→180°) and outputs it to the
servo within a 20ms cycle.

• delay(15): Pauses for 15ms after each angle update to allow the servo sufficient time to reach the
target position. A 15ms delay with a 1° step produces a smooth sweeping motion. Larger delays
result in slower rotation, while smaller delays increase speed but may cause jitter or stuttering.

2.for (int pos = 180; pos >= 0; pos--)

• Reverse logic of the previous loop, decrementing pos from 180 to 0 to rotate the servo "from the
maximum angle back to the minimum angle".

• Similarly uses myservo.write(pos) to update the angle and delay(15) to control speed.

3. Function: These two opposing for loops create a complete "sweep-and-return" operation,
causing the servo to oscillate back and forth.

void loop() {
 for (int pos = 0; pos <= 180; pos++) {
 myservo.write(pos);
 delay(15);
 }
 for (int pos = 180; pos >= 0; pos--) {
 myservo.write(pos);
 delay(15);
 }
}

After studying the code above, you have implemented a servo control system that
enables the servo to perform slow reciprocating swings between 0 and 180 degrees.
Starting from 0 degrees, the servo gradually rotates to 180 degrees at a rate of 15
milliseconds per step, then returns to 0 degrees at the same speed, repeating this cycle
continuously.

Complete Code
Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

70

In this lesson, we use an additional library (Servo),so it’s important to include it before
running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the Servo folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

71

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

72

Lesson 12 - IR control LED

Introduction
This section will focus on learning how to implement diversified control of LEDs using an
infrared remote control, including single-color LED lighting, multi-color LED flashing, and
running light effects. You will master the interactive logic between infrared signal
reception and LED driving.

The infrared remote sensor works by receiving infrared signals to achieve control
functions. The transmitter modulates control instructions into infrared light signals of a
specific frequency. The sensor receives these signals, demodulates them back into
control instructions, and then the microcontroller performs the corresponding operations.

Principle of Infrared Remote Sensor Operation

At the heart of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During this recombination, electrons drop from
a higher energy level to a lower one, releasing the excess energy in the form of
photons—producing light. The color (or wavelength) of the emitted light is determined by
the energy band gap of the semiconductor material. This process is a direct application
of electroluminescence.

Working Principle of LED

The infrared remote control works by inputting control commands through buttons. The
microcontroller encodes and modulates these commands into infrared signals, which are
then transmitted by an infrared emitter. The receiving end's infrared sensor captures the
signals, demodulates them back into commands, and drives the device to perform the
corresponding operations.

Principle of Infrared Remote Control Operation

Hardware Used in This Lesson:

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

LED
IR Remote Control

73

• Press "1": Red LED lights up; • Press "2": Yellow LED lights up;

• Press "3": Green LED lights up; • Press "4": Red, yellow, and green
LEDs flash synchronously;

• Press "5": The three-color LEDs
light up sequentially to create a
chasing light effect;

• Press "6": All LEDs turn off.

Operation Effect Diagram

1 2

3 4

5

6

74

Function: Receive infrared signals from TV/air conditioner remotes, etc.

Key Points:

• decode() acts like "ears" to monitor signals.
• command serves as a unique identifier for each button (eg: 0x0C = Button 1).
• resume() functions as a "continue listening" instruction.

if (IrReceiver.decode()) {
 unsigned long code = IrReceiver.decodedIRData.command;
 handleIR(code);
 IrReceiver.resume();
}

1. Hardware Connections and Library Inclusion

Key Explanations

Core Logic:
• First three buttons: Control red/yellow/green LEDs individually.

• Buttons 4/5: Trigger two lighting effects.

• Button 6: Emergency shutdown for all LEDs.

Special Design:
• Call turnOffAll() before each button press to avoid conflicts.

• Use effectMode variable to track the current lighting effect.

2. Button Command Processing (Control Hub）

void handleIR(unsigned long code) {
 turnOffAll();
 effectMode = 0;
 switch(code) {
 case 0x0C: digitalWrite(RED_LED_PIN, HIGH); break;
 case 0x18: digitalWrite(YELLOW_LED_PIN, HIGH); break;
 case 0x5E: digitalWrite(GREEN_LED_PIN, HIGH); break;
 case 0x08: effectMode = 1; break;
 case 0x1C: effectMode = 2; break;
 case 0x5A: turnOffAll(); break;
 }
}

75

Flashing Mode:

• Toggle all LEDs on/off simultane-
ously every 300ms.

• Use on = !on to invert the state (on
→ off → on).

Chasing Light Mode:

• Light up LEDs sequentially in the
order: red → yellow → green.

• Use effectStep % 3 to cycle
between 0-2.

• Increment effectStep++ to
advance the lighting sequence.

Key Role: Ensure all lights can be
immediately stopped at any time.

3. Lighting Effect Processing (Dynamic Effects)

4. Auxiliary Function

void handleEffects() {
 if(effectMode == 1) {
 if(millis() - lastEffectTime > 300) {
 bool on = !on;
 digitalWrite(RED_LED_PIN, on);
 digitalWrite(YELLOW_LED_PIN, on);
 digitalWrite(GREEN_LED_PIN, on);
 lastEffectTime = millis();
 }
 }
 else if(effectMode == 2) {
 if (millis() - lastEffectTime > 300) {
 switch (effectStep % 3) {
 case 0:
 digitalWrite(RED_LED_PIN, HIGH);
 digitalWrite(YELLOW_LED_PIN, LOW);
 digitalWrite(GREEN_LED_PIN, LOW);
 break;
 case 1:
 digitalWrite(RED_LED_PIN, LOW);
 digitalWrite(YELLOW_LED_PIN, HIGH);
 digitalWrite(GREEN_LED_PIN, LOW);
 break;
 case 2:
 digitalWrite(RED_LED_PIN, LOW);
 digitalWrite(YELLOW_LED_PIN, LOW);
 digitalWrite(GREEN_LED_PIN, HIGH);
 break;
 }
 effectStep++;
 lastEffectTime = millis();
 }
 }
}

void turnOffAll() {
 digitalWrite(RED_LED_PIN, LOW);
 digitalWrite(YELLOW_LED_PIN, LOW);
 digitalWrite(GREEN_LED_PIN, LOW);
}

76

After studying the provided code, you have successfully implemented an infrared
remote-controlled LED system. This system receives specific infrared signals (corre-
sponding to buttons 1-6 on the remote) to control the on/off states and display modes of
three LEDs (red, yellow, and green). The detailed functions are as follows:

• Buttons 1-3: Turn on the corresponding LED (red, yellow, or green, respectively).
• Button 4: Activates synchronized blinking of all three LEDs.
• Button 5: Triggers a running-light effect (sequential cycling through the three LEDs).
• Button 6: Turns off all LEDs.

Complete Code

In this lesson, we use an additional library (IRremote),so it’s important to include it
before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the IRremote folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

77

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)
After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board.Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

78

Lesson 13 - Weather Reminder

Introduction
This project is based on the All_in_one_Starter_Kit_for_Pico2 development board. It
uses a DHT20 sensor to collect real-time environmental temperature and humidity
data, and controls a TFT display, LED lights, and a buzzer based on set thresholds to
achieve graphical display of environmental conditions and abnormal warning functions.
It’s ideal for basic learning and practical applications in intelligent environmental
monitoring scenarios. The project uses SquareLine Studio to design the screen
interface and employs the LVGL library for display and interaction control, enabling
dynamic visualization of temperature and humidity information and interface prompts
for abnormal conditions.

The sensor measures environmental parameters via sensing elements. Temperature
detection relies on thermistors or semiconductor materials whose resistance/voltage
varies with temperature. Humidity sensing typically uses capacitive or resistive elements
with dielectric constant/resistance changes with moisture. Built-in signal conditioning
converts analog signals to digital output for MCU processing.

Working Principle of Temperature and Humidity Sensor

Hardware Used in This Lesson:

TFT Display
temperature and humidity
sensor module

LED

Buzzer

79

• 1. When the temperature from the DHT20 sensor exceeds 25°C, the yellow LED
should turn on, and the TFT display shows "Temperature is high".

The buzzer generates sound by vibrating a diaphragm driven by an electrical signal.
When an alternating current is applied, the diaphragm vibrates rapidly due to magnetic
or piezoelectric effects, producing sound. The pitch and frequency are determined by the
current frequency, and it is commonly used for alerts or alarms.

Principle of Buzzer Operation

At the heart of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During this recombination, electrons drop from
a higher energy level to a lower one, releasing the excess energy in the form of
photons—producing light. The color (or wavelength) of the emitted light is determined by
the energy band gap of the semiconductor material. This process is a direct application
of electroluminescence.

Working Principle of LED

The display controls each pixel's brightness/color via driver circuits. The main IC
converts image data to electrical signals, transmitted to row/column driver ICs for
line-by-line refreshing. LCDs adjust liquid crystal alignment with voltage to modulate
light, while OLEDs emit light directly. A timing controller ensures signal synchronization
to prevent artifacts.

Working Principle of Display Screen

Operation Effect Diagram

80

• 2. When the temperature rises above 30°C, the red LED turns on, the TFT display
shows "It’s hot", and the yellow LED turns off.

• 3. When humidity drops below 40%, the buzzer sounds, the TFT display shows "Air
is dry", and the yellow LED turns on if the temperature exceeds 25°C.

• 4. Press the LED button once, the green LED turns on. Press the LED button again, the
green LED turns off.

Buzzer alarm

81

Before we begin designing the user interface we need, it’s important to understand a
key concept—LVGL. LVGL is a lightweight graphics library that gives us powerful tools
to build intuitive and visually appealing interfaces. It forms the core of SquareLine
Studio and serves as the foundation for the design work ahead.
Once we grasp the basics of how LVGL works, we’ll move on to hands-on practice:
installing SquareLine Studio, designing a graphical interface, and exporting it into
runnable code.
So, let’s start by exploring the concept of LVGL—this will be the first building block of
our UI design journey.

What is LVGL?

LVGL (Light and Versatile Graphics Library) is a free and open-source graphics library
designed specifically for embedded systems with limited resources. It provides all the
essential features needed to build smooth and visually appealing user interfaces,
including a wide range of widgets, graphic effects, animations, and event handling.
LVGL is lightweight, highly portable, and supports hardware acceleration—making it a
powerful choice for microcontroller-based projects.

SquareLine Studio

SquareLine Studio is a visual UI design tool (IDE) built on top of LVGL. It features an
intuitive drag-and-drop interface designer, real-time previews, and powerful property
and event editors—all of which allow developers to create embedded interfaces
without writing a lot of low-level code. The tool automatically generates C/C++ code
based on LVGL, greatly speeding up development and delivering a true
“what-you-see-is-what-you-get” design experience.

Installing SquareLine Studio

1. Visit the official website
Open your web browser and go to the official SquareLine Studio download page:
SquareLine Studio: https://squareline.io/

82

2. Choose the right version
Select the installation package that matches your operating system (Windows, macOS,
or Linux).
For this guide, we’ll use the Windows version as an example. It's recommended to
download version 1.3.4, as it includes a simulation feature that’s missing in version 1.4.

3. Download the installer
Click the download button and wait for the download to finish. Once it's complete,
double-click the setup.exe file.

4. Run the installer
Follow the prompts in the installation wizard.

Click “Install” .

83

wait for the installation process to complete.

• 5. Finish installation
Installation Complete.

84

A detailed operational guide for designing UI with Squareline Studio and integrating it
with Arduino code, covering the complete process of project creation, material addition,
label setup, code export, and main program integration:

1. Launch Squareline Studio

Register or log in to an account as prompted (a 30-day trial period is available for
first-time use. Please register an account as instructed. When you log in to your account
next time, you will continue to use it.)

Project Creation and UI Design with Squareline Studio

85

• 1. Select the creation entry: Click the "Create" button at the top of the interface to
start the project creation process.

• 2. Determine the LVGL major version: At "Select major LVGL version," select version
9.2.

• 3. Select the hardware/platform type: Choose "Desktop."

• 4. Select the project template: Choose the corresponding template (eg: "CMake/E-
clipse/VScode with SDL for development on PC," a template for developing UI on PC
based on SDL).

• 5. Project name: lesson13.spj

• 6.Storage path

• 7 . Screen resolution: 320*240 (designed according to the screen specifications)

• 8. Color depth: 32bit

• 9. LVGL version：9.2.2

• 10. Complete creation: After confirming the parameters are correct, click the green
"CREATE" button in the lower-right corner to generate the project.

Create a new project by following these steps:

86

2. Add Design Materials

The tasks we need to complete are: real-time display of temperature values, reminder
messages, and humidity values through the LVGL graphic interface. When the tempera-
ture is too high, turn on the red or yellow light as a prompt; when the humidity is too low,
activate the buzzer alarm; and turn the green light on and off by clicking the button in the
lower-right corner of the graphic interface (to verify the touch function of the display).

Open the provided images and add them in.

Select the designed background
images, temperature-humidity
icons, and other materials to add.
Select the designed background
images, temperature-humidity
icons, and other materials to add.

87

Next, drag the background image to
the center of the canvas to cover the
entire canvas area as the basic
background of the UI interface. In the
right-side Properties panel
(IMAGE->Transform), precisely set
the coordinates (eg: X:0, Y:0) and
size to ensure the background image
fits the canvas perfectly.

Drag the temperature icon, reminder
icon, and humidity icon to appropriate
positions on the canvas in sequence.
You can arrange them freely
according to design requirements, or
refine the layout of each icon in the
right-side Properties panel by
modifying coordinate values,
adjusting the scaling ratio, and other
parameters.

You can set the specific coordinates
for each icon in detail in the right-side
Properties panel (IMAGE->Trans-
form).

88

3. Add Text Labels and Value Display

• 1. Add text labels:

Find the Text Label tool in the interface elements toolbar and add text labels for
temperature, reminder information, and humidity in sequence.

• 2. Set label properties:

Click each text label and make detailed settings in the right-side Properties panel,
including the label name, size, style, etc., to enhance the interface aesthetics and
readability.

 (The temperature label here is TempLable.)
 (The reminder information label here is AlarmLable.)
 (The humidity label here is HumiLable.)

This allows you to easily call them in the code (TempLable, AlarmLable, HumiLable).

89

4. Add EVENTS Function to the Button to Turn the Green Light On and Off

• 1. Select the button and add an event: Select the "LED" button in the lower-right
corner, click "EVENTS->ADD EVENT" in the right-side Properties panel, and create a
new interactive event.

Next, create the button model:

Create a button: Select the BUTTON
label from the left sidebar and drag it to
the lower-right corner of the interface. In
the right-side Properties panel, modify
the button's background color to green,
the text content to "LED," and the text
color to black to intuitively display the
button function.

Merge the button and label: Click
"Hierarchy" in the left column, drag the
LED text label to the Button row to
merge them into a whole. Then, in the
Properties panel, set the LED text label
position to X:0, Y:0 to center the text in
the Button label.

90

Configure event parameters:

• 2. Name: Enter "LEDEvent" to
name the event.

• 3. Select 'RELEASED' as the
trigger condition, which triggers the
event when the button is released.

• 4. Select 'CALL FUNCTION' as the
action to execute the corresponding
operation through a callback
function.

• 5. After selection, click "ADD."

• Add a custom function name to the
CALL function, and later write the
specific logic of this function in the
Arduino code to achieve on/off
control of the green light.

After the setup is complete, perform
a simple simulation run first to check
if the button event is triggered
normally.

91

After the design is complete, we are
ready to export the project.

Follow this order to configure your
own project export path.

After the setup is complete, you can
export the relevant UI code of the
project you designed.

92

The UI code you just designed is as
follows.

This export path is the same as the
previous export path. As corresponding
to No.2 in the figure, you can find the
UI file you made here.

Copy these codes and place them
together with your ino main code.

Export UI Code

93

In this way, the overall design of the UI interface you need to display is completed.
Next, you only need to call it in the code!

At the current stage of project development, the code design work of the UI interface
has been completed, and the next key task is to write the Arduino main code file to
achieve the expected functions. Specifically, the main code needs to implement the
collection and processing of temperature-humidity sensor data and send these data to
the UI interface through an appropriate communication method to accurately display the
temperature and humidity values on the interface.

uint32_t draw_buf[DRAW_BUF_SIZE / 4]; // 320x240/10 * 2bytes = 15KB: Defines a display
buffer draw_buf of type uint32_t with a size of DRAW_BUF_SIZE / 4.Since each uint32_t occupies
4 bytes, this allocation results in DRAW_BUF_SIZE bytes of memory.

lv_display_set_buffers(disp,draw_buf,NULL,sizeof(draw_buf), LV_DISPLAY_RENDER_-
MODE_PARTIAL);: Core LVGL function for setting the display buffer.

• disp: Display device object (created using lv_display_create())
• draw_buf: Address of the drawing buffer (used by the CPU to write pixel data)
• NULL: Indicates single buffering (no double buffer is used)
• sizeof(draw_buf): Size of the buffer in bytes
• LV_DISPLAY_RENDER_MODE_PARTIAL: 分Partial rendering mode — only updates

void my_disp_flush(...) : This function is called by LVGL when a portion of the screen needs to be
refreshed. The function name is user-defined and must be registered via lv_display_set_flush_cb().

gfx.pushPixels((lgfx::rgb565_t *)px_map, w * h); Pushes a block of pixel data to the display.

• gfx is the display object from LovyanGFX.
• pushPixels(...) is a high-speed pixel transfer function from LovyanGFX, optimized using low-level
SPI acceleration.
• (lgfx::rgb565_t *)px_map：Casts the pixel data pointer px_map from LVGL to rgb565_t*
(compatible with the screen’s RGB565 format)
• w * h：Total number of pixels in the region to be refreshed

uint32_t draw_buf[DRAW_BUF_SIZE / 4];
lv_display_set_buffers(disp, draw_buf, NULL, sizeof(draw_buf),
LV_DISPLAY_RENDER_MODE_PARTIAL);
void my_disp_flush(...) {
 gfx.pushPixels((lgfx::rgb565_t *)px_map, w * h);
}

1. LVGL Display Engine Integration

Key Explanations

94

When the temperature exceeds
30°C, turn on the red LED (GPIO18)
and display the warning message
"It's hot" on the interface.

If the temperature is between 25°C
and 30°C, turn on the yellow LED
(GPIO20) to indicate a mildly warm
condition.

When humidity drops below 40%,
drive the buzzer by outputting a 1.3
kHz PWM square wave on GPIO10
to sound the alarm.Otherwise, call
noTone(10) to stop the buzzer and
mute the alarm.

int status = DHT.read();Calls DHT.read() to initiate a measurement request from the DHT20

sensor.The function returns an integer status code (eg: DHT20_OK) indicating whether the read

was successful.

if (status == DHT20_OK) : Checks whether the sensor read was successful.Data is processed only

if the status equals DHT20_OK (typically defined as macro value 0).

float humidity = DHT.getHumidity(); Retrieves humidity data from the sensor, in %RH (relative

humidity), typically with a resolution of 0.1%.

float temperature = DHT.getTemperature(); Gets the current ambient temperature in degrees

Celsius (°C),with a typical precision of 0.1°C.

snprintf(tempStr, sizeof(tempStr), "%.1f C", temperature);

• Uses snprintf() to format the floating-point temperature into a string, eg: "24.5 C"

• tempStr: Destination string buffer (predefined as char tempStr[...])

• sizeof(tempStr): imits the maximum write length to prevent buffer overflow

• "%.1f C"：Format specifier

• %.1f formats the float to one decimal place

• C is the unit suffix (Celsius)

2. Sensor Data Handling

3. Alarm Control Logic

int status = DHT.read();
if (status == DHT20_OK) {
 float humidity = DHT.getHumidity();
 float temperature = DHT.getTemperature();
 snprintf(tempStr, sizeof(tempStr), "%.1f C", temperature);
}

if (temperature > 30) {
 digitalWrite(18, HIGH);
 lv_label_set_text(ui_AlarmLabel, "It's hot");
} else if (temperature > 25) {
 digitalWrite(20, HIGH);
}
if (humidity < 40.0) {
 tone(10, 1300);
} else {
 noTone(10);
}

95

millis() millis() obtains the number of milliseconds elapsed since the system started (non-blocking
and continuously increasing).

Check whether currentMillis - lastUpdate has reached the predefined interval.

When the condition is met, execute the critical task and update lastUpdate to record the current
time. DHT.begin() initializes the sensor and prepares it for data reading.

4. Auxiliary Function

unsigned long currentMillis = millis();
if (currentMillis - lastUpdate >= interval) {
 lastUpdate = currentMillis;
}
lv_timer_handler();

The code configures parameters for the FT5x06 touch controller:

Defines the X/Y coordinate range of the touchscreen.

Sets the interrupt pin and reset pin.

Configures I2C communication parameters (port, address, SDA/SCL pins, frequency).

Finally, associates the touch controller with the display panel.

5. Core Functions for Touch Functionality
• 1. Touch Configuration (Touch Settings in LGFX Class)

auto touch_cfg = _touch.config();
touch_cfg.x_min = 0;
touch_cfg.x_max = 239;
touch_cfg.y_min = 0;
touch_cfg.y_max = 319;
touch_cfg.pin_int = 25;
touch_cfg.pin_rst = 24;
touch_cfg.i2c_port = 0;
touch_cfg.i2c_addr = 0x38;
touch_cfg.pin_sda = 4;
touch_cfg.pin_scl = 5;
touch_cfg.freq = 400000;
_touch.config(touch_cfg);
_panel.setTouch(&_touch);

96

lv_indev_t *indev = lv_indev_create();Creates a new input device instance. lv_indev_create() is an
LVGL API that allocates and initializes a new input device structure.It returns a pointer to an
lv_indev_t object representing this input device, which will be used for subsequent touch input
handling.

lv_indev_set_type(indev, LV_INDEV_TYPE_POINTER); Sets the input device type to LV_INDEV_-
TYPE_POINTER, indicating a pointer-type device such as a touchscreen.

lv_indev_set_read_cb(indev, my_touchpad_read); Assigns the input device's read callback
function, used to fetch touch coordinates and status.

This function serves as the LVGL input device read callback.

1. Obtain the current touch status and coordinates via gfx.getTouch().
2. If a touch is detected (touched is true):

 • Set the state to PRESSED.

 • Store the touch coordinates into data->point.
3. If no touch is detected:

 • Set the state to RELEASED.

• 2. Touch Read Callback Function (my_touchpad_read)

void my_touchpad_read(lv_indev_t *indev, lv_indev_data_t *data)
{
 uint16_t touchX, touchY;
 bool touched = gfx.getTouch(&touchX, &touchY);
 if (touched) {
 data->state = LV_INDEV_STATE_PRESSED;
 data->point.x = touchX;
 data->point.y = touchY;
 } else {
 data->state = LV_INDEV_STATE_RELEASED;
 }
}

• 3. Touch Device Initialization (in setup() function)

lv_indev_t *indev = lv_indev_create();
lv_indev_set_type(indev, LV_INDEV_TYPE_POINTER);
lv_indev_set_read_cb(indev, my_touchpad_read);

97

Function Definition and Trigger Logic: LED_Control(lv_event_t * e) is an event callback function
of LVGL (embedded GUI library). When the associated "LED button" on the display is clicked,
LVGL will automatically call this function to execute the logic.

State Switching: static bool ledState = false; : A static boolean variable ledState is defined to
record the current state of the green light.

ledState = !ledState; : Each time the button is clicked, ledState is flipped (switching between on →
off / off → on).

Controlling Hardware Pins: digitalWrite(19, ledState ? HIGH : LOW); : According to the value of
ledState, control Arduino pin 19 to output a high level (HIGH, turning on the green light) or a low
level (LOW, turning off the green light), implementing the function of "clicking the button to switch
the state of the green light".

• 4. Controlling the Green LED On/Off
Add the following code to event.c to implement button-controlled green LED toggling:

void LED_Control(lv_event_t * e)
{
 static bool ledState = false;
 ledState = !ledState;
 digitalWrite(19, ledState ? HIGH : LOW);

After learning the above code, a touchscreen-based temperature and humidity monitor-
ing alarm system is implemented. The system uses a DHT20 sensor to collect tempera-
ture and humidity data, and displays it in real time through an LVGL graphical interface.
When the temperature is too high, red or yellow LEDs are lit for prompt; when the
humidity is too low, a buzzer is activated for alarm, achieving a complete function of
sensor data collection, screen display, and hardware linkage.

Complete Code
Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

98

In this lesson, we use an additional library (DHT20, LovyanGFX-develop, lvgl and
lv_conf.h),so it’s important to include it before running the code to avoid compilation
errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the DHT20, LovyanG-
FX-develop, lvgl and lv_conf.h folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

99

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

• Copy or move the downloaded library folder directly into the libraries directory. Once done, the
Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code

After placing the library correctly, follow the upload steps from Lesson 1 to compile and upload the
code to your board.Make sure the compilation completes without errors before running the program.

100

Lesson 14 - Servo Angle Control

Introduction
In this section, we will learn how to control the rotation angle of a servo motor using an
infrared remote and display the angle on a TFT screen. Different buttons on the
infrared remote can be used to: input angle values, confirm the angle setting, start/stop
the servo motor, and display the current angle in real-time on the TFT screen.

A servo motor achieves precise angular positioning via closed-loop control. The control
circuit interprets PWM signals to determine target position. A motor drives gears while a
potentiometer provides real-time positional feedback to a comparator. Any deviation
triggers corrective rotation until error is eliminated. Standard servos offer 0°~180°
rotation with high torque and rapid response.

Working Principle of Servo Motor

The infrared remote control works by inputting control commands through buttons. The
microcontroller encodes and modulates these commands into infrared signals, which are
then transmitted by an infrared emitter. The receiving end's infrared sensor captures the
signals, demodulates them back into commands, and drives the device to perform the
corresponding operations.

The display controls each pixel's brightness/color via driver circuits. The main IC converts
image data to electrical signals, transmitted to row/column driver ICs for line-by-line
refreshing. LCDs adjust liquid crystal alignment with voltage to modulate light, while
OLEDs emit light directly. A timing controller ensures signal synchronization to prevent
artifacts.

Principle of Infrared Remote Control Operation

Working Principle of Display Screen

Hardware Used in This Lesson:

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

Servo Motor

TFT Display

101

Operation Effect Diagram

1. Enable IR Remote Control：

Press the button labeled "CH+" on the device. This operation will
activate the infrared remote control function, preparing it for
subsequent command reception.

2. Angle Setting and Motor Control (Numeric Keys: 0-9)

• Set 180 degrees: Press the numeric keys and sequentially enter "1", "8", "0" on the
input interface. The display will real-time show "Input:180". After confirming the input is
correct, press the "Confirm" button on the remote control. The system will drive the
servo motor to rotate to the target angle of 180 degrees based on this command.
Meanwhile, the TFT screen will simultaneously update to display "Rotated to :180",
providing an intuitive feedback on the current angle of the motor.

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSEInput: 180

Rotated to: 180

102

• Set 90 degrees: Repeat the above operation process. Press the numeric keys to enter
"9" and "0". The display will show "Input:90". Press the "Confirm" button. The servo
motor will then rotate to the 90-degree position, and the TFT screen will display "Rotated
to :90".

• Set 0 degrees: Press the numeric key to enter "0". The display will show "Input:0".
Press the "Confirm" button. The servo motor will precisely rotate to 0 degrees, and the
TFT screen will show "Rotated to :0".

Input: 90

Input: 0

Rotated to: 90

Rotated to: 0

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

103

3. Disable IR Remote Control：
When you need to stop using the IR remote control to operate
the servo motor, press the "CH-" button on the device. This
action will disable the IR remote control function. Thereafter, no
matter which numeric keys are pressed, the system will not
respond, and the servo motor will not start, ensuring the device
remains safely stationary under unexpected operations.

IrReceiver.decode() checks if an IR signal from the remote control is received.

IrReceiver.decodedIRData.command extracts the key code of the pressed button, which is used
later to determine which button was pressed.

Debounce Mechanism: When a button is held down or the remote is jiggled, the same key code is
repeatedly sent. This code uses two static variables to ensure that the same key press is
processed only once within 300ms, preventing multiple responses.

This is a standard practice in remote control input programming, resulting in a smoother user
experience.

if (IrReceiver.decode()) {
 unsigned long code = IrReceiver.decodedIRData.command;
 static uint32_t lastKeyCode = 0;
 static unsigned long lastKeyTime = 0;
 const unsigned long debounceDelay = 300;
 if (code == lastKeyCode && (millis() - lastKeyTime) < debounceDelay) {
 IrReceiver.resume();
 return;
 }
 lastKeyCode = code;
 lastKeyTime = millis();

1. IR Signal Reception & Debounce Mechanism

Key Explanations

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

VOL- VOL+

NEXT PLAYPAUSEPREV

104

[CH-] Button: Set the control
variable servoEnabled to false,
preventing the servo from acting
when the confirmation button
is pressed later.

[CH+] Button: Resume servo
control by setting servoEnabled to
true.

[PLAY/PAUSE] Button:

• Use constrain(angleInput, 0, 180)
to ensure the angle is within the
servo's safe range.

• If the servo is enabled, execute
myservo.write(angleInput) to rotate
the servo to that angle, and use
showRotatedAngle(angleInput) to
display "Rotated to xxx°" on the
screen.

• If disabled, the serial port will
prompt "Servo not enabled".

• Clear the input angle and delay
for 1000ms to allow the user 1
second to observe the result.

Numeric Keys 0-9:

• Use the "cumulative input
method" for angle entry. For
example, pressing "1" then "2"
gives angleInput = 1*10 + 2 = 12.

• Support continuous multi-digit
input (up to three digits) for
convenient entry of large angles
like 100 or 120.

Default: Unrecognized codes are printed for subsequent debugging.

2. IR Button Function Mapping

switch (code) {
 case 0x45:
 servoEnabled = false;
 Serial.println("Servo disabled");
 break;
 case 0x47:
 servoEnabled = true;
 Serial.println("Servo enabled");
 break;
 case 0x43:
 angleInput = constrain(angleInput, 0, 180);
 if (servoEnabled) {
 myservo.write(angleInput);
 showRotatedAngle(angleInput);
 } else {
 Serial.println("Servo is disabled. Cannot rotate.");
 }
 angleInput = 0;
 delay(1000);
 break;
 case 0x16: angleInput = angleInput * 10 + 0; break;
 case 0x0C: angleInput = angleInput * 10 + 1; break;
 case 0x18: angleInput = angleInput * 10 + 2; break;
 case 0x5E: angleInput = angleInput * 10 + 3; break;
 case 0x08: angleInput = angleInput * 10 + 4; break;
 case 0x1C: angleInput = angleInput * 10 + 5; break;
 case 0x5A: angleInput = angleInput * 10 + 6; break;
 case 0x42: angleInput = angleInput * 10 + 7; break;
 case 0x52: angleInput = angleInput * 10 + 8; break;
 case 0x4A: angleInput = angleInput * 10 + 9; break;
 default:
 Serial.print("Unknown code: ");
 Serial.println(code, HEX);
 break;
}

105

Limit input to a maximum of three digits
(prevents overflow from misoperations).

For each new input, call showAngleInput() to
display the current input angle on the screen
in real time, keeping the user informed.

Resume IR reception and wait for the next
button press.

3. Alarm Control Logic

if (angleInput > 999) angleInput = 0;
showAngleInput();
IrReceiver.resume();

Servo.attach(pin, min, max) binds the servo
to a pin and specifies the minimum/maxi-
mum pulse width, ensuring compatibility
with different servo brands.

myservo.write(angle) directly inputs the angle, and the library automatically converts the angle to
pulse width output to drive the servo.

During input, showAngleInput() displays
"Input: [current input angle]" to inform the
user of the entered value.

After confirmation, showRotatedAngle()
displays "Rotated to: [angle]" to confirm the
servo has executed the command.

Clear the screen each time to avoid content
overlay.

4. Auxiliary Function

myservo.attach(13, 450, 2520);
myservo.write(angleInput);

 5. Screen Display Functions

void showAngleInput() {
 gfx.fillScreen(TFT_BLACK);
 gfx.setTextSize(3);
 gfx.setCursor(30, 100);
 gfx.setTextColor(TFT_WHITE);
 gfx.printf("Input: %d", angleInput);
}
void showRotatedAngle(int angle) {
 gfx.fillScreen(TFT_BLACK);
 gfx.setCursor(30, 100);
 gfx.setTextSize(3);
 gfx.setTextColor(TFT_GREEN);
 gfx.printf("Rotated to: %d", angle);
}

After studying the above code, you have implemented a servo angle adjustment system
controlled by an infrared remote control. Combined with a TFT display and touch
configuration, the system can achieve the following functions:
Input an angle value via the infrared remote control to rotate the servo to the specified
angle, while the TFT screen simultaneously displays the input angle and execution
results in real time.

Complete Code
Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

106

In this lesson, we use three additional library (IRremote, LovyanGFX-develop, Servo),
so it’s important to include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the IRremote, LovyanG-
FX-develop and Servo folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

107

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

108

Lesson 15 - Polite Automatic Door

Introduction
In this section, a touch module is used to control a relay, enabling advanced operations
of a servo motor to simulate the opening and closing of an automatic door. When the
touch button is activated, the relay switches on to open the door, then automatically
turns off after 10 seconds to close it. A TFT screen provides real-time status updates
during the process.

A relay is a switch device that uses electromagnetic or mechanical principles to achieve
control. When the coil is energized, it generates a magnetic field that attracts the
armature, causing the normally closed contacts to open and the normally open contacts
to close. When de-energized, the magnetic field disappears and the contacts return to
their original state. It enables low-current/voltage control of high-current/voltage circuits,
widely used for circuit control and signal conversion, providing isolation and amplification.

Working Principle of Relay Operation

A touch sensor detects touches by monitoring capacitance or resistance changes.
Capacitive types measure field variation when body capacitance alters electrode charge;
resistive types register pressure-induced contact between conductive layers. Signal
processing converts subtle changes to digital outputs with noise immunity. Supports
multi-touch and gesture recognition, widely used in smart devices.

The display controls each pixel's brightness/color via driver circuits. The main IC converts
image data to electrical signals, transmitted to row/column driver ICs for line-by-line
refreshing. LCDs adjust liquid crystal alignment with voltage to modulate light, while
OLEDs emit light directly. A timing controller ensures signal synchronization to prevent
artifacts.

Working Principle of Touch Sensor

Working Principle of Display Screen

Hardware Used in This Lesson:

TFT Display

Relay
Touch
Sensor

109

Operation Effect Diagram

1. System Startup and Initialization

Once the power is turned on, the
program starts automatically:

• The TFT screen lights up and
displays the initial message: “Please
open the door.”
• The relay remains off by default (no
power), waiting for a touch input.

2. Touch-Triggered Door Opening

When the user touches the sensor with
a finger, the system detects the input:

• The relay is energized, simulating the
door opening; the relay’s indicator light
turns on.
• The TFT screen clears and displays
“Welcome” to indicate the door is now
open.

3. Auto-Closing After Delay

The door remains open for 10 seconds:

• After the countdown finishes, the
relay is turned off, simulating the door
closing; the indicator light turns off.
• The TFT screen returns to the
“Please open the door” message, and
the system goes back to standby
mode, ready for the next touch
activation.

Please open the door

Please open the door

Welcome

Please open the door

Welcome

Please open the door

110

Initialize the display module.

Set text color, size, and position.

Show the startup message: “Please open the door.”

gfx.init();
gfx.fillScreen(TFT_BLACK);
gfx.setTextColor(TFT_WHITE);
gfx.setTextSize(2);
gfx.setCursor(20, 100);
gfx.print("Please open the door");

1. Display Initialization and Welcome Message

Key Explanations

Monitor for touch input from the sensor.

When a touch is detected: activate the relay (to
simulate door opening) and display a welcome
message.

After 10 seconds, turn off the relay and return to
the initial “Please open the door” prompt.

if (digitalRead(touchPin)) {
 digitalWrite(relayPin, HIGH);
 gfx.fillScreen(TFT_BLACK);
 gfx.setCursor(60, 100);
 gfx.print("Welcome");
 delay(10000);
 digitalWrite(relayPin, LOW);
 ...
}

2. Touch Button Detection and Door Lock Control Logic

relayPin: Controls the door lock via the relay.

touchPin: Receives input from the external
capacitive touch sensor.

backlightPin: Controls the backlight of the display.

const int relayPin = 12;
const int touchPin = 14;
const int backlightPin = 0;

3. Pin Definitions

After studying the code above, you will have built a smart automatic door control system.
The system uses an SPI bus to drive the ST7789 display and an I2C interface to
connect the FT5x06 touch module. While in standby mode, the screen displays the
message “Please open the door.” When the touch sensor is activated, the relay powers
on to simulate the door opening, and the display switches to a “Welcome” screen. After
10 seconds, the relay automatically powers off to simulate door closing, and the screen
returns to the original prompt. The entire operation is managed through a state machine,
enabling intelligent door control and smooth user interaction.

Complete Code
Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

111

In this lesson, we use an additional library (LovyanGFX-develop), so it’s important to
include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop
folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

112

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

• Copy or move the downloaded library folder directly into the libraries directory. Once done, the
Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code

After placing the library correctly, follow the upload steps from Lesson 1 to compile and upload the
code to your board.Make sure the compilation completes without errors before running the program.

113

Lesson 16 - Sound Reminder

Introduction
In this section, a sound sensor is used to monitor ambient noise levels. When the noise
exceeds a preset threshold, a buzzer is triggered to emit a 1-second alert tone,
creating a “noise detection–buzzer alert” linkage. The system continuously monitors
sound intensity; if the noise persists, the buzzer repeats the alert. Once the noise
stops, the reminders automatically cease.

A sound sensor transduces acoustic vibrations into electrical signals via transducer
elements. Electret microphones generate signals through capacitance variation between
diaphragm and backplate, while piezoelectric types rely on deformation potentials.
Signals are pre-amplified, filtered, and digitized by ADC. Sensitivity and frequency
response depend on diaphragm material and structural design, enabling specific sound
pressure detection.

Working Principle of Sound Sensor

The buzzer generates sound by vibrating a diaphragm driven by an electrical signal.
When an alternating current is applied, the diaphragm vibrates rapidly due to magnetic
or piezoelectric effects, producing sound. The pitch and frequency are determined by the
current frequency, and it is commonly used for alerts or alarms.

Once the program starts, the system continuously monitors ambient sound in real time:

Working Principle of Buzzer Operation

Operation Effect Diagram

Hardware Used in This Lesson:

Sound Sensor

Buzzer

114

1. Sound Trigger:

When the surrounding noise
exceeds the defined threshold, the
buzzer emits a “beep” sound that
lasts for 3 seconds.

2. Continuous Alerts:

If the noise level remains high, the
buzzer will repeatedly sound at
regular intervals.

3. Auto-Silence:

When the environment becomes
quiet again, the buzzer stops
automatically.

int soundValue = analogRead(SOUND_PIN);

2. Reading Analog Values from the Sound Sensor

SOUND_PIN is defined as pin 29, which connects to the
sound sensor.

buzzerPin is a variable representing the buzzer connected
to pin 10.

Subsequent code will use these two pins for reading input
and controlling output.

#define SOUND_PIN 29
int buzzerPin = 10;

1. Pin Definitions for Sound Sensor and Buzzer

Key Explanations

The Buzzer sounds
continuously for 3
seconds

The Buzzer will
sound cyclically

The Buzzer
automatically stops
sounding

115

The function analogRead(...) is used to read the analog signal, which corresponds to the voltage
output by the sound sensor (range: 0–1023).

The louder the sound, the higher the voltage, and thus the larger the soundValue.

This value determines whether the buzzer alarm is triggered.

This is the key condition: if the analog value from the sound sensor is greater than or equal to
300, it indicates a significant sound in the environment (such as clapping or shouting).

The value 300 is an empirical threshold and can be adjusted to suit the actual environment
sensitivity.

if (soundValue >= 300)

3. Determining if the Sound Exceeds the Set Threshold

tone(buzzerPin, 1300); plays a 1300Hz tone on the
buzzer pin.

delay(1000); keeps the buzzer sounding for 1 second
to enhance the alert

tone(buzzerPin, 1300);
delay(1000);

noTone(buzzerPin);

4. Controlling the Buzzer On or Off
• 1. When the sound is loud:

• 2. When the sound is quiet:
noTone(...) stops the buzzer, keeping it silent.

This prevents continuous buzzing that might annoy
users.

After studying the code above, you will have developed an intelligent environmental
monitoring system based on a sound sensor and buzzer. The system continuously reads
the ambient sound intensity in real time and compares it to a preset threshold. When the
detected sound exceeds the threshold, the buzzer automatically triggers a continuous alert.
The design supports customizable sound sensitivity, alert duration, and sampling frequency,
and includes a safety feature to turn off the buzzer if the program is interrupted.

You can refer to the flashing steps from Lesson 1 (page 10-15) as a guide.

Complete Code

Programming Steps

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

116

Lesson 17 - Calculation Of Acceleration

Introduction
This section utilizes the LSM6DS3TRC accelerometer sensor to continuously capture
acceleration data along the X, Y, and Z axes of the development board. The measure-
ments are displayed in real time on a TFT screen. When the board is moved rapidly,
the acceleration values on the corresponding axes change dynamically, enabling a
visual correlation between motion and acceleration.

An accelerometer measures acceleration by detecting inertial force. MEMS types use
silicon microstructures where proof mass displacement alters capacitance/piezoresis-
tance, converted to electrical signals. Piezoelectric variants generate charges when
stressed. Integrated signal conditioning enables static (gravity) and dynamic acceleration

Working Principle of Accelerometer

The display controls each pixel's brightness/color via driver circuits. The main IC
converts image data to electrical signals, transmitted to row/column driver ICs for
line-by-line refreshing. LCDs adjust liquid crystal alignment with voltage to modulate
light, while OLEDs emit light directly. A timing controller ensures signal synchronization
to prevent artifacts.

Working Principle of Display Screen

Hardware Used in This Lesson:

TFT Display

Accelerometer

117

1. System Auto-Initialization

The TFT screen displays the title
“Accelerometer data” with labels for
the X, Y, and Z axes and their initial
values shown below.

2. Observing Movement Along Axes

Shake the board rapidly in any
direction: the X, Y, and Z axis values
update dynamically in real time,
reflecting the direction and magnitude
of acceleration in 3D space

gfx.init(): Calls the LovyanGFX library method to initialize the TFT display.

pinMode(0, OUTPUT) and digitalWrite(0, HIGH): Turns on the backlight to ensure the screen is lit.

gfx.fillScreen(BG_COLOR): Fills the screen with the background color (black) to prevent ghosting.

gfx.init();
pinMode(0, OUTPUT);
digitalWrite(0, HIGH);
gfx.fillScreen(BG_COLOR);

1. Display Initialization and Configuration

Key Explanations

Operation Effect Diagram

Accelerometer data

X: -0.1 M/S ^2

Y: 0.11 M/S ^2

Z: 10.00 M/S ^2

Accelerometer data

X: 0.08 M/S ^2

Y: 5.80 M/S ^2

Z: 8.30 M/S ^2

X

Y

Z

118

static unsigned long lastUpdate = 0; defines a static variable lastUpdate to store the timestamp of
the last accelerometer data refresh. Using static ensures that the variable retains its value
between function calls instead of being reinitialized every time.

if (millis() - lastUpdate < UPDATE_INTERVAL) return; is the core logic for controlling data refresh
frequency. It prevents excessive updates that could cause screen flickering or waste system
resources.

• Does the current time minus the last update time fall short of the preset refresh interval
(UPDATE_INTERVAL = 150 ms)?

• If yes, the refresh time has not yet arrived, so return exits the loop() early, skipping data
acquisition and screen update during this cycle.

millis() is a built-in Arduino function returning the number of milliseconds since the device
powered on, useful for timing intervals.

lastUpdate = millis(); updates lastUpdate to the current timestamp once the interval requirement is
met, preparing for the next refresh cycle.

static unsigned long lastUpdate = 0;
if (millis() - lastUpdate < UPDATE_INTERVAL) return;
lastUpdate = millis();

3. Data Refresh Control Logic

Specifies using Wire1 (the second I2C bus) for communication.

Sets SDA to GPIO2 and SCL to GPIO3.

Starts the I2C bus to prepare for communication with the LSM6DS3TR-C sensor.

Wire1.setSDA(2);
Wire1.setSCL(3);
Wire1.begin();

if (!lsm6ds3trc.begin_I2C(0x6B, &Wire1)) {
 gfx.setTextColor(TFT_RED);
 gfx.setCursor(20, SCREEN_HEIGHT / 2 - 20);
 gfx.print("Sensor initialization failed!");
 while (1) delay(10);
}

2. Display Initialization and Configuration

begin_I2C(0x6B, &Wire1): Initializes the LSM6DS3TR-C sensor at address 0x6B.

If initialization fails, an error message is displayed on the screen, and the system enters an infinite
loop to prevent ignoring the error.

119

for (int i = 0; i < 3; i++) {
 float value = 0;
 switch (i) {
 case 0: value = accel.acceleration.x; break;
 case 1: value = accel.acceleration.y; break;
 case 2: value = accel.acceleration.z; break;
 }
 gfx.fillRect(
 AXIS_AREA[i].x_value,
 AXIS_AREA[i].y_value,
 AXIS_AREA[i].w,
 AXIS_AREA[i].h,
 BG_COLOR
);
 gfx.setTextColor(TEXT_COLOR);
 gfx.setCursor(AXIS_AREA[i].x_value, AXIS_AREA[i].y_value);
 gfx.printf("%.2f m/s^2", value);
}

sensors_event_t is a data structure from the Adafruit Sensor library.

getEvent() fetches the latest acceleration values from the sensor in meters per second squared
(m/s²).

Only acceleration data is requested here; the second and third parameters are set to nullptr,
indicating that gyroscope and temperature data are not retrieved

gfx.fillRect(...) — clears the screen area first to prevent ghosting.

• Before displaying new values, the previous value area is erased using the background color.

• This avoids leftover digits caused by changes in number length (eg: from 9.88 to 10.12),

gfx.printf(...) — formats and prints the new value.

• Uses gfx.printf("%.2f m/s^2", value); to output acceleration values rounded to two decimal
places.

• Ensures the display remains neat and the precision is appropriate.。

The loop updates the X, Y, and Z axis data separately:

• Uses predefined position and size info from AXIS_AREA[i] to locate where each axis is shown on
the screen.

• Each axis’s data is refreshed individually to maintain an organized display.

sensors_event_t accel;
lsm6ds3trc.getEvent(&accel, nullptr, nullptr);

4. Retrieving Three-Axis Acceleration Data

5. Displaying Data on the Screen (Clearing Old Values + Writing New Values)

120

After studying the code above, you've built a real-time 3-axis acceleration monitoring
system using the LSM6DS3TRC sensor. The system reads acceleration data via the I2C
interface, processes it, and dynamically displays the X, Y, and Z values (in m/s²) on a
240×320 resolution TFT screen. Data updates every 150 milliseconds, and when the
development board moves, the corresponding axis values change in real time, creating a
visual link between motion and acceleration.

Complete Code

In this lesson, we use four additional library (LovyanGFX-develop, Adafruit_BuslO,
Adafruit_LSM6DS and Adafruit_Unified_Sensor), so it’s important to include it before
running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop,
Adafruit_BuslO, Adafruit_LSM6DS and Adafruit_Unified_Sensor folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

121

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

• Copy or move the downloaded library folder directly into the libraries directory. Once done, the
Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code

After placing the library correctly, follow the upload steps from Lesson 1 to compile and upload the
code to your board. Make sure the compilation completes without errors before running the program.

122

1. System Startup and Initialization

Once the power is turned on, the
program starts automatically:

• The TFT screen lights up and
displays the initial message: “Please
open the door.”
• The relay remains off by default (no
power), waiting for a touch input.

2. Touch-Triggered Door Opening

When the user touches the sensor with
a finger, the system detects the input:

• The relay is energized, simulating the
door opening; the relay’s indicator light
turns on.
• The TFT screen clears and displays
“Welcome” to indicate the door is now
open.

3. Auto-Closing After Delay

The door remains open for 10 seconds:

• After the countdown finishes, the
relay is turned off, simulating the door
closing; the indicator light turns off.
• The TFT screen returns to the
“Please open the door” message, and
the system goes back to standby
mode, ready for the next touch
activation.

Lesson 18 - Smart Corridor Light

Introduction
In this chapter, you’ll learn how to integrate a sound sensor, a light sensor, and an LED
to build a smart hallway lighting system. By coordinating multiple sensors, the system
can automatically control the LED based on ambient light and sound input—mimicking
real-world intelligent lighting behavior.

A sound sensor transduces acoustic vibrations into electrical signals via transducer
elements. Electret microphones generate signals through capacitance variation between
diaphragm and backplate, while piezoelectric types rely on deformation potentials.
Signals are pre-amplified, filtered, and digitized by ADC. Sensitivity and frequency
response depend on diaphragm material and structural design, enabling specific sound
pressure detection.

Working Principle of Sound Sensor

A light sensor converts light signals to electrical signals via the photoelectric effect.
Ambient light strikes a photosensitive component (eg: photoresistor, photodiode, or
phototransistor), where photons excite charge carriers, altering resistance or generating
photocurrent. Signal conditioning (eg: ADC/amplifier) processes the output, and an MCU
calculates light intensity from voltage/current changes. Different sensors detect visible,
IR, or UV wavelengths.

Working Principle of a Light Sensor

Hardware Used in This Lesson:

Sound Sensor
Light Sensor

LED

123

At the heart of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During this recombination, electrons drop from
a higher energy level to a lower one, releasing the excess energy in the form of
photons—producing light. The color (or wavelength) of the emitted light is determined by
the energy band gap of the semiconductor material. This process is a direct application
of electroluminescence.

After the system is powered on, the smart corridor light follows this logic:

1. Bright Environment:

When there is sufficient natural light,
the LED remains off regardless of
any sound detected.

2. Low-Light Environment:

When the lighting is dim or the
light sensor is covered, the LED
stays off by default.

Once a sound is detected, the LED
turns on and stays lit for 10 seconds
before automatically turning off.

If the sound continues, the LED remains on continuously. Once the sound stops, it stays
on for another 10 seconds before shutting off automatically.This demonstrates that the
system operates as expected in all scenarios.

Working Principle of LED

Operation Effect Diagram

124

Wire1.setSDA() and Wire1.setSCL() define the pins used for I2C communication;

Wire1.begin() starts the I2C bus;

lightMeter.begin() initializes the light sensor with the following parameters:

• CONTINUOUS_HIGH_RES_MODE: sets the sensor to continuous high-resolution measurement
mode;

• 0x5c: the I2C address of the sensor;

• &Wire1: specifies the I2C interface to use.

Wire1.setSDA(I2C_SDA);
Wire1.setSCL(I2C_SCL);
Wire1.begin();
if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE,
0x5c, &Wire1)) {
 Serial.println(F("BH1750 begin success"));
} else {
 Serial.println(F("BH1750 init failed"));
}

1. I2C Initialization and Light Sensor Setup

This section of code initializes the I2C communication and sets up the
BH1750 light sensor:

Key Explanations

The core logic consists of a three-stage process:

Light intensity judgment → Sound trigger detection → Timed LED control, This is implemented
through state flags (isSoundDetected, isLedOn) and a timestamp (ledOnTimestamp) to manage
smart linkage behavior.

The main logic is handled inside the if (lightMeter.measurementReady(true)) function, with the
following process:

static bool isSoundDetected = false;
static bool isLedOn = false;
static unsigned long ledOnTimestamp = 0;

2. Main Control Logic Entry

int lux = lightMeter.readLightLevel();

• 1. Light Sensor Reading

125

When a sound signal is detected
(digitalRead(SOUND_PIN) returns
HIGH):

• Immediately turn on the LED
(digitalWrite(LedPin, HIGH)):

• Set the relevant state flags:

 isLedOn = true

 isSoundDetected = true

• Record the current time (millis()) as the
LED activation timestamp

Sustained Sound:

If no new sound is detected but one
was detected previously:

• Keep the LED on for up to 10 seconds
(millis() - ledOnTimestamp < 10000)

• After 10 seconds, turn off the LED and
reset flags

If no sound is detected:

• Turn off the LED directly
(digitalWrite(LedPin, LOW))

• Update the isLedOn flag to false

measurementReady(true) checks if the sensor has new data available

The returned lux value determines the subsequent logic branch (bright/dim light handling).

Immediately turn off the LED (digitalWrite(LedPin, LOW))

Reset all state flags:

• isLedOn = false (LED status)

• isSoundDetected = false (sound detection flag)

• ledOnTimestamp = 0 (timestamp)

digitalWrite(LedPin, LOW);
isLedOn = false;
isSoundDetected = false;
ledOnTimestamp = 0;
Serial.println("[ACTION] Light strong - turning OFF LED");

• 2. Bright Light Handling (lux ≥ 100)

if (digitalRead(SOUND_PIN)) {
 digitalWrite(LedPin, HIGH);
 isLedOn = true;
 isSoundDetected = true;
 ledOnTimestamp = millis();
} else {
 if (isSoundDetected) {
 if (millis() - ledOnTimestamp < 10000) {
 digitalWrite(LedPin, HIGH);
 isLedOn = true;
 } else {
 digitalWrite(LedPin, LOW);
 isLedOn = false;
 isSoundDetected = false;
 }
 } else {
 digitalWrite(LedPin, LOW);
 isLedOn = false;
 }
}

• 3. Dim Light Handling (lux < 100)

126

LedPin is a defined constant (value 18), representing the physical pin number connected to the
LED

OUTPUT is a predefined constant that sets the pin to output mode.

Purpose:

• Configures the pin as a digital output, capable of outputting HIGH (3.3V/5V) or LOW (0V)

• In this mode, the pin can drive an LED, relay, or other load

SOUND_PIN is a defined constant (value 29), representing the physical pin number connected to
the sound sensor

INPUT is a predefined constant that sets the pin to input mode.

Purpose:

• Configures the pin as a digital input, capable of reading HIGH/LOW levels from external signals

• In this mode, the pin can detect switch states or digital sensor outputs

pinMode(LedPin, OUTPUT);
pinMode(SOUND_PIN, INPUT);

3. Pin Mode Configuration

After studying the above code, you have implemented an intelligent corridor lighting control
system based on a light sensor and a sound sensor. The system controls the LED light
through the interaction of ambient light intensity and sound signals:

• When the light intensity exceeds 100 lux, the LED remains off;
• In dim lighting, if a sound is detected, the LED turns on and stays lit for 10 seconds;
• If continuous sound is detected during this period, the timer resets;
• Once the sound stops and the countdown ends, the LED automatically turns off.

Complete Code

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

127

In this lesson, we use an additional library (BH1750), so it’s important to include it before
running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the BH1750 folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

128

• Copy or move the downloaded library folder directly into the libraries directory. Once done, the
Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code (You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and upload the
code to your board.Make sure the compilation completes without errors before running the program.

129

Lesson 19 - Simple Calculator

Introduction
In this chapter, a basic calculator function will be implemented using an IR remote
control. Users can input numbers and operators via the remote, and the expressions
will be displayed and evaluated on a TFT screen.The main objective is to master input
handling from the IR remote, number parsing, and the programming of simple
arithmetic logic.

Hardware Used in This Lesson:

The infrared remote sensor works by receiving infrared signals to achieve control
functions. The transmitter modulates control instructions into infrared light signals of a
specific frequency. The sensor receives these signals, demodulates them back into
control instructions, and then the microcontroller performs the corresponding operations.

Principle of Infrared Remote Sensor Operation

The infrared remote control works by inputting control commands through buttons. The
microcontroller encodes and modulates these commands into infrared signals, which are
then transmitted by an infrared emitter. The receiving end's infrared sensor captures the
signals, demodulates them back into commands, and drives the device to perform the
corresponding operations.

Principle of Infrared Remote Control Operation

The display controls each pixel's brightness/color via driver circuits. The main IC
converts image data to electrical signals, transmitted to row/column driver ICs for
line-by-line refreshing. LCDs adjust liquid crystal alignment with voltage to modulate
light, while OLEDs emit light directly. A timing controller ensures signal synchronization
to prevent artifacts.

Working Principle of Display Screen

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

TFT Display

IR Remote Control

130

Operator and Control Key Functions

Key Type

Numeric Keys

Operator Keys

Special Keys

Key Label

0–9

+

-

NEXT

PREV

-(negative)

100+

Equals (=)

EQ (Clear)

Function Description

Inputs numeric values; LCD displays “Input: [value]”.

Performs addition; LCD shows current input (eg:
“Input: 3+”).

Performs subtraction; LCD shows current input (eg:
“Input: 3–”).

Performs multiplication (equivalent to “×”); LCD
shows current input (eg: “Input: 3*”).

Performs division (equivalent to “/”); LCD shows
current input (eg: “Input: 3/”).

Used to input negative numbers; press this key
before the number (eg: “-5”).

Acts as a decimal point; used to enter decimals (eg:
press “3 → 100+ → 5” for “3.5”).

Confirms calculation and outputs result, rounded to
two decimal places (eg: “Result: 8.00”).

Clears current input and result; returns to initial state
(LCD shows “Input:”).

Operation Effect Diagram

CH- CH CH+

EQ

100+ 200+0

1 2 3

4 5 6

7 8 9

CHANNEL

PREV

VOL- VOL+

NEXT PLAYPAUSE

EQ

100+

131

Press numeric keys to enter values.The LCD displays: “Input: [entered value]”.For
example, after entering “153”, the LCD shows: “Input: 153”.。

Press an operator key (+, –, VOL+ (×), or VOL– (/)) to continue the input.For instance,
after entering “153” and then pressing “+”, the LCD shows: “Input: 153+”.

Press more numeric keys to input another value.For example, entering “526” shows:
“Input: 153+526”.You can continue entering a full expression like: “Input:
153+526–987*104/356”.

Press the equals key (=) to evaluate the expression.The result will be displayed on the
LCD with two decimal places.For example, the LCD will show: “Result: 390.66”.

1. Basic Calculation Process

First, press the minus key “-”, then input the number. For example, inputting “-136” will
display on the LCD as “Input: -136”.

Press an operator key such as “+”, and the LCD will display “Input: -136+”.

Enter another number, for example “598”, and the LCD will update to “Input:
-136+598”. Continue entering the full expression, such as “Input: -136+598*407/386”.

Press the confirm key to calculate and display the result. In this example, the result is
shown as “Result: 494.53”.

2. Operations Starting with a Negative Sign

Result: 390.66

Result: 494.53

Input: 153+526–987*104/356

Input: -136+598*407/386

132

To enter a decimal number, use the “100+” key as the decimal point.For example, to
input “123.45”: first press “123”, then “100+”, and finally “45”.The LCD will show: “Input:
123.45”.

Press an operator key, such as “+”.The LCD updates to show: “Input: 123.45+”.

Enter another decimal or integer.For example, entering “567.89” will result in: “Input:
123.45+567.89”.You may continue inputting a more complex expression, such
as:“Input: 123.45+567.89–99.3×23/56.12”.

Press the equals key (=) to evaluate the expression.

The result will be displayed with two decimal places, eg: “Result: 650.64”.

3. Decimal Calculation Process

After entering a number and the “/” operator, then inputting “0” (eg: “236/0”),the LCD
will display: “Input: 236/0”.

When the equals key is pressed, the LCD shows: “Result: Error” to indicate an error.

When a division operation is detected, the system checks if the divisor is zero:if (b ==
0) return NAN;If the divisor is 0, the function immediately returns a NAN (Not-a-Num-
ber) value to prevent invalid calculation.This NAN value is passed up to the main loop,
where isnan(result) is evaluated.If true, the system displays “Error” on the screen to
inform the user.This mechanism provides immediate interception and consistent
handling of division-by-zero errors,ensuring calculator stability and a user-friendly
experience.

4. Division by Zero Handling Process

Result: 650.64

Result: Error

Input: 123.45+567.89–99.3×

23/56.12

Input: 236/0

133

During the input process or after
completing an expression, if an
input error is detected or the user
wants to start a new calculation,
they can press the EQ Clear Key.

The LCD will clear the current
“Input: [entered content]” along
with any previous result,returning
to the initial state and waiting for
new input.

5. Using the EQ Clear Key

IrReceiver.begin(pin, option) is a method from the IRremote library used to initialize the infrared
receiver.

The parameter 11 indicates that the IR receiver’s data output pin (OUT) is connected to GPIO11.

DISABLE_LED_FEEDBACK disables the default onboard LED blinking feedback used by the
library, which would otherwise toggle the built-in LED (eg: pin 13) to indicate signal reception.

This line ensures that the IR receiver module works properly and can respond to remote control
key presses.Without correctly setting this pin, the system will not be able to receive IR commands.

IrReceiver.begin(11, DISABLE_LED_FEEDBACK);

1. Infrared Receiver Initialization

Key Explanations

Set GPIO0 as an output pin to control the LCD backlight power.

digitalWrite(0, HIGH) sets the backlight control pin to high, which turns on the screen backlight.

If this line is missing, the display may remain black (no visible content) due to the backlight being
off, even though the screen is properly rendering the content.

pinMode(0, OUTPUT);
digitalWrite(0, HIGH);

2. Backlight Control

Input:

Input:

134

This part uses a switch-case structure to handle IR remote key codes (code) and update the
calculator’s input string input accordingly.

case 0x16: input += "0"; break;: Each case corresponds to a remote control button. The ellipsis
in the code represents other numeric keys (0-9) corresponding to the cases. When a numeric key
is pressed (for example, 0x16 corresponds to 0, 0x0C corresponds to 1, and so on), the number is
directly appended to the end of the input string. For the complete code, please check the link to
the full code below..

case 0x15: input += "+"; break;: When an operator key (such as +, -, *, /, etc.) is pressed, the
corresponding symbol is appended to the input string.

case 0x09: input = ""; break;: When the clear key (eg: 0x09) is pressed, the input string is
directly cleared.

OK key (0x43): When the user presses the "=" or "OK" key (corresponding to the infrared code
0x43), a calculation operation is triggered.

float result = evaluateExpression(input);: The evaluateExpression(input) function is called to
compute the current input expression string (eg: "3+5*2"), and the result is stored in the result
variable.

case 0x19: This corresponds to the decimal point key on the infrared remote control (assuming
0x19 is the infrared code for ".").

switch (code) {
 case 0x16: input += "0"; break;
 case 0x0C: input += "1"; break;

 case 0x15: input += "+"; break;
 case 0x07: input += "-"; break;
 case 0x44: input += "/"; break;
 case 0x40: input += "*"; break;
 case 0x09: input = ""; break;
 case 0x43: {
 float result = evaluateExpression(input);
 }
 case 0x19: {
 if (!(input.length() == 0 || input.endsWith(".") || isOperator(input.back()))) {
 input += ".";
 }
 break;
 }
}

3. Expression Input Processing (IR Handling in loop())

135

infixToPostfix(): This function converts an infix expression (eg: 3 + 4 * 2) into a postfix expression
(eg: 3 4 2 * +).It handles operator precedence and parentheses to ensure correct order of
operations.

The infixToPostfix function is responsible for converting infix expressions into postfix notation.

 Input (infix) → infixToPostfix() → Output (postfix)

Infix Expression:：This is the standard format we normally use, where operators are placed
between operands.

Examples:

• 3 + 4 (addition)

• 10 * (5 - 2) (multiplication with parentheses)

• (2 + 3) / 5 (division with parentheses)

In the code, the input variable holds the user-entered infix expression via IR remote (eg: "3+4*2").

The evaluateExpression() function first converts this infix input to postfix using infixToPostfix()
before evaluating it.

Postfix Expression (also known as Reverse Polish Notation):

• In this notation, the operator comes after the operands. This format eliminates the need for
parentheses and is easier to process using a stack.

Examples:

• Infix: 3 + 4 → Postfix: 3 4 +

• Infix: 10 * (5 - 2) → Postfix: 10 5 2 - *

• Infix: (2 + 3) / 5 → Postfix: 2 3 + 5 /

if (!(input.length() == 0 || input.endsWith(".") || isOperator(input.back()))): Checks if the
decimal point can be entered at this time. If allowed, "." is appended to the input string.

input.length() == 0: The input is empty, preventing a direct leading "." (eg: ".5").

input.endsWith("."): The last character is ".", preventing consecutive decimal points (eg: "5..2").

isOperator(input.back()): The last character is an operator (+, -, *, /), preventing a direct "." after
an operator (eg: "5+.3").

4. Computation Logic

• 4.1 Infix to Postfix Conversion：infixToPostfix()

1.

2.

2.

136

▪ 1. Initialization Section

▪ 2. Handling the Negative Sign (Unary Operator)

▪ 3. Core Logic

The Infix To Postfix function converts infix expressions into postfix notation (also known as
Reverse Polish Notation).

std::stack<char> stack: Creates a stack to temporarily hold operators.

Initialize the string 'num' to temporarily store numbers, including multi-digit and decimal numbers.

bool infixToPostfix(const String &infix, String &postfix) {
 std::stack<char> stack;
 String num = "";
}

Key conditions:

• The current character is a “-”

• And there is no preceding number (i.e., 'num' is empty) or the previous character is an operator

Example:

• In the expression “-5 + 3”, the “-” is recognized as a negative sign

• In the expression “3 - 5”, the “-” is treated as a subtraction operator (so it doesn’t enter this case)

if (c == '-' && (num.isEmpty() || isOperator(infix[i-1]))) {
 num += c;
 continue;
}

if (isdigit(c) || c == '.') {
 num += c;
} else if (isOperator(c)) {
 if (num.length() > 0) {
 postfix += num + " ";
 num = "";
 }
 while (!stack.empty() && precedence(stack.top()) >= precedence(c)) {
 postfix += stack.top();
 postfix += " ";
 stack.pop();
 }
 stack.push(c);
} else {
 return false;
}

137

if (isdigit(c) || c == '.') checks whether the current character
c is a digit (using isdigit(c)) or a decimal point ('.'). If yes, it
gets added to the temporary number string 'num'.

num += c; appends the character to 'num', which
temporarily holds continuous digits until an operator or the
end of the expression is encountered.

Part 1: Handling Numbers and Decimal Points

if (isdigit(c) || c == '.') {
num += c;
}

▪ 4. Operator Handling

Suppose the infix expression being processed is 3+4*2, and the current operator scanned is “+”:

1. else if (isOperator(c)) { ... }

• Purpose: This branch runs when an operator (such as +, -, *, /) is encountered.

• Example: When the "+" is scanned, this branch is triggered.

2. if (num.length() > 0) { ... }

• Purpose: Checks if a complete number has been accumulated (eg: 3 or 3.14).

• Logic:

• If 'num' is not empty (meaning a number was scanned before), add it to the postfix expression
and clear 'num' to prepare for the next number.

• If 'num' is empty (such as when operators appear consecutively like the second "-" in 3+-4),
this step is skipped.

• Example:

• When "+" is scanned and 'num' is "3" (length > 0), execute postfix += "3 ", so the postfix
expression becomes "3 ", and 'num' is cleared.

3. postfix += num + " "

• Purpose:

• Adds the accumulated number (like 3 or 3.14) to the postfix expression, followed by a space
for separation.

else if (isOperator(c)) {
 if (!num.isEmpty()) {
 postfix += num + " ";
 num = "";
 }
 while (!stack.empty() && precedence(stack.top()) >= precedence(c)) {
 postfix += stack.top() + " ";
 stack.pop();
 }
 stack.push(c);
}

138

▪ 5. Finalizing the Expression: Add the Last Number and Remaining Opera-
tors from the Stack to the Postfix Expression.

Loop conditions:

• !stack.empty(): Process the top operator only when the stack is not empty.

• precedence(stack.top()) >= precedence(c): The precedence of the operator at the top of the
stack is greater than or equal to that of the current operator c.

• stack.pop(): Pop the top operator from the stack and append it to the postfix expression (eg:
+, *).

while (!stack.empty() && precedence(stack.top()) >= precedence(c)) {
 postfix += stack.top() + " ";
stack.pop();
}

if (!num.isEmpty()) postfix += num + " ";
while (!stack.empty()) {
 postfix += stack.top() + " ";
 stack.pop();
}

• Example:

• After adding 3, the postfix expression becomes "3 ".

• As 4 and 2 are scanned later, the postfix expression updates to "3 4 " and then "3 4 2 ".

4. num = ""

• Purpose: Clears the temporary variable 'num' to get ready for the next number.

• Example:

• After adding 3, 'num' resets from "3" to an empty string to prepare for collecting the next
number, 4.

5. Operator Precedence Handling (details omitted)

• Purpose: Manage stack operations based on operator precedence.

• Example:

• When scanning "+", the stack is empty, so "+" is pushed onto the stack directly.

• When scanning "", since "" has higher precedence than the "+" on top of the stack, "*" is
pushed onto the stack.

• The final postfix expression becomes 3 4 2 * +.

Handling Operator Precedence:

139

float evaluatePostfix(const String &postfix) {
 std::stack<float> stack;
 String token = "";
 for (int i = 0; i <= postfix.length(); ++i) {
 char c = postfix[i];
 if (c == ' ' || c == '\0') {
 if (token.length() > 0) {
 if (isOperator(token[0]) && token.length() == 1) {
 if (stack.size() < 2) return NAN;
 float b = stack.top(); stack.pop();
 float a = stack.top(); stack.pop();
 switch (token[0]) {
 case '+': stack.push(a + b); break;
 case '-': stack.push(a - b); break;
 case '*': stack.push(a * b); break;
 case '/':
 if (b == 0) return NAN;
 stack.push(a / b);
 break;
 }
 } else {
 stack.push(token.toFloat());
 }
 token = "";
 }
 } else {
 token += c;
 }
 }
 return (stack.size() == 1) ? stack.top() : NAN;
}

if (!num.isEmpty()) postfix += num + " ": Handles the last number in the expression. When
reaching the end of the infix expression, the temporary variable 'num' may still hold the last
number (eg: 3.14), which needs to be added to the postfix expression. If 'num' is not empty, add it
to the postfix expression followed by a space (numbers and operators in postfix are separated by
spaces).

while (!stack.empty()) { ... }: Pops all remaining operators from the stack and appends them to
the postfix expression. After scanning the infix expression, the stack may still contain operators
(such as +, *), which should be popped in order and added to the postfix expression. Due to the
stack’s Last-In-First-Out nature, the popping order naturally respects operator precedence rules.

evaluatePostfix() is a function that calculates the value of a postfix expression (Reverse
Polish Notation, RPN). It takes a space-separated postfix expression string (eg: "3 4 2 * +")
and returns its computed result (eg: 11).

Postfix Expression → evaluatePostfix() → Final Result.

• 4.2 Evaluating Postfix Expressions: evaluatePostfix()

140

▪ 1. Variable Initialization

std::stack<float> stack; This line defines a stack container named 'stack' specifically for storing
operands of type float. Its main role is to temporarily hold numbers during the evaluation of the
postfix expression.

• std:: indicates that the stack belongs to the C++ Standard Library.

• Stack: The stack data structure is chosen because its Last-In-First-Out (LIFO) behavior perfectly
matches the evaluation logic of postfix expressions (when an operator is encountered, the most
recently pushed numbers are processed first).

• Float: Specifies that the elements in the stack are floating-point numbers, allowing correct
handling of integers, decimals, and negative numbers.

• stack(variable name): The name clearly reflects its purpose—to store operands for calculation,
which are dynamically managed using push() and pop() operations.

String token = "": This line initializes an empty string variable named 'token', which is used to
build up numbers or operators character by character during postfix expression parsing, until a
space or string end triggers processing.

• String: Indicates this variable is a string type (likely Arduino's String class or similar), capable of
flexibly storing multi-character numbers (eg: "3.14") or single-character operators (eg: "+").

• token (variable name): Named after the compiler concept “token,” representing an independent
unit extracted from the expression (a complete number or operator).

• = "": Initialized as an empty string to ensure no leftover data before processing each new token.

std::stack<float> stack;
String token = "";

▪ 2. Main Loop

for (int i = 0; i <= postfix.length(); ++i): The loop condition includes the equal sign (<=) to ensure
the iteration reaches the string termination character \0, allowing correct termination even if there's
no trailing space.

char c = postfix[i]; Retrieves the character at position i, which could be a digit, operator, space, or
the string terminator \0.

if (c == ' ' || c == '\0'): When the current character is a space or the string terminator \0, it indicates
a complete token has been formed (eg: "5" or "*").

for (int i = 0; i <= postfix.length(); ++i) {
 char c = postfix[i];
 if (c == ' ' || c == '\0') {
 } else {
 token += c;
 }
}

141

stack.push(token.toFloat());: Converts the token
to a float and pushes it onto the stack, preparing
it for future operations.

Operator check: If the token is one of +, -, *, or /:

• 1. if (stack.size() < 2) return NAN; — Verify operand count: At least two numbers must be on the
stack to perform the operation; otherwise, return NAN indicating an invalid expression.

• 2. float b = stack.top(); stack.pop(); float a = stack.top(); stack.pop(); — Pop operands: The first
popped value is the right operand b, and the second is the left operand a, ensuring the correct
order for evaluation.

• 3. Perform operation: Compute a op b according to the operator and push the result back onto
the stack.

• 4. case '/': if (b == 0) return NAN; stack.push(a / b); break; — Division by zero check: If the divisor
b is zero, return NAN to prevent division errors.

token = "";: Resets the string variable token to an
empty string, clearing the processed token (whether
a number or operator) and preparing to parse the
next expression unit.

▪ 3. Processing the Token

if (token.length() == 1 && isOperator(token[0])) {
 if (stack.size() < 2) return NAN;
 float b = stack.top(); stack.pop();
 float a = stack.top(); stack.pop();
 switch (token[0]) {
 case '+': stack.push(a + b); break;
 case '-': stack.push(a - b); break;
 case '*': stack.push(a * b); break;
 case '/': if (b == 0) return NAN; stack.push(a / b); break;
 }
}

Separator branch (if): Triggered when the token holds a complete unit (like "3.14" or "+"), then
enters processing logic.

Non-separator branch (else): Concatenates digits, decimal points, or operator characters to build
a complete token.

• For example, input "3.14" appends '3', '.', '1', '4' sequentially, resulting in token = "3.14".

• Input "" directly sets token = "" (a single-character operator).

1. If it is an operator:

else {
 stack.push(token.toFloat());}

2. If it is a number:

token = "";

3. Reset token:

142

• stack.size() == 1: Checks if there is exactly one element left in the stack.

• stack.top(): If there is exactly one element, returns it as the final result.

• NAN: If the stack size is not one (empty or multiple leftover elements), returns NAN indicating
invalid or erroneous calculation.

Using a conditional (ternary) operator with the following logic:

return (stack.size() == 1) ? stack.top() : NAN;

bool isOperator(char c) {
 return c == '+' || c == '-' || c == '*' || c == '/';
}

4. Return the final result

bool isOperator(char c)

Parameter: c — the character to check

Return value: boolean; returns true if c is an operator, otherwise false

return c == '+' || c == '-' || c == '*' || c == '/';

Uses the logical OR operator (||) to check if the character c matches any of the four basic
arithmetic operators:

• +(addition)

• -(subtraction)

• *(multiplication)

• / (division)

• 4.3 Helper Function

case 0x19: {
 if (input.length() == 0 || input.endsWith(".") || isOperator(input[input.length() - 1])) {
 break;
 }
 int i = input.length() - 1;
 while (i >= 0 && (isdigit(input[i]) || input[i] == '.')) {
 if (input[i] == '.') break;
 --i;
 }
 if (i >= 0 && input[i] == '.') break;
 input += ".";
 break;
}

5. Decimal Point Handling

143

int i = input.length() - 1;
while (i >= 0 && (isdigit(input[i]) || input[i] == '.')) {
 if (input[i] == '.') break;
 --i;
}

if (i >= 0 && input[i] == '.') break;
input += ".";

▪ 1. Invalid Input Validation:

if (input.length() == 0 || input.endsWith(".") || isOperator(input[input.length() - 1]))

• input.length() == 0: Prevents entering a decimal point when there's no prior input.

• input.endsWith("."): Prevents entering multiple decimal points in a row.

• isOperator(input[input.length() - 1]): Ensures a decimal point doesn't follow directly after an
operator.

▪ 2. Current Number Check:

▪ 3. Final Decision:

int i = input.length() - 1;: A variable i is defined and initialized to point to the last character in the
input string, so the scan can go from right to left.

while (i >= 0 && (isdigit(input[i]) || input[i] == '.')): The loop continues scanning left as long as
the index is valid (i >= 0) and the character is either a digit or a decimal point. This helps isolate
the current number being typed (like "12.34" in a longer expression).

if (input[i] == '.') break;: If a decimal point is found, the loop stops right away, indicating that the
current number already includes a decimal point—so no more can be added.

--i;: The index i is decremented to continue checking the characters to the left.

1. if (i >= 0 && input[i] == '.') break;

• i >= 0: Ensures that the index is within valid bounds and prevents out-of-range errors.

• input[i] == '.': Checks if the current character is a decimal point.

• break;：If a decimal has already been found in the number, exit the loop.

2. input += ".";

If no decimal point was found during the scan (meaning the loop wasn’t broken), then a decimal
point is safely appended to the input string.

144

After studying the above code, you will have built a simple calculator controlled by an
infrared remote. It allows users to input numbers and operators using the remote, displays
the expression in real time on the screen, and performs calculations including decimal
support and basic arithmetic operations. Additional features include backlight control, input
debounce handling, and validation for decimal point usage. The entire calculation process
and result are clearly presented through a graphical user interface.

Complete Code

In this lesson, we use two additional library (IRremote and LovyanGFX-develop), so it’s
important to include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the IRremote and
LovyanGFX-develop folder.

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

145

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board. Make sure the compilation completes without errors
before running the program.

146

Lesson 20 - Hall Counter

Introduction
In this chapter, you'll learn the basic application of a Hall effect sensor. A magnet is
used to trigger the sensor, enabling a counting function with the results displayed in
real time on a TFT screen. This system is useful for detecting magnetic field changes
and can be applied in scenarios such as access control counters and object detection.

A Hall sensor detects magnetic fields via the Hall effect. When current flows perpendic-
ular to a magnetic field in a semiconductor plate, carriers deflect due to Lorentz force,
generating a transverse potential difference (Hall voltage). This voltage, proportional to
field strength, is amplified into analog/digital outputs. It measures field intensity,
position, speed, etc., featuring non-contact operation and high reliability for motor
control and position sensing.

Working Principle of Hall Sensor

At the heart of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During this recombination, electrons drop from
a higher energy level to a lower one, releasing the excess energy in the form of
photons—producing light. The color (or wavelength) of the emitted light is determined by
the energy band gap of the semiconductor material. This process is a direct application
of electroluminescence.

Working Principle of LED

Hardware Used in This Lesson:

Hall Sensor

LED

147

1. Initial State:

After powering on, the TFT screen displays “Counter: 0,” and the system enters
standby mode.

2. Count Trigger:

a. When a magnet is brought near the Hall sensor, it detects the change in magnetic
field and outputs a high signal.

b. Upon receiving the signal, the microcontroller flashes a red LED once (turns it on and
off), and the counter increments by 1.

c. The TFT screen updates in real time to display “Counter: X,” where X is the current

3. Repeating the Count Operation:

Each time the magnet is brought close to and then removed from the sensor, the
counter increments following the same process (e.g., 1 → 2 → 3...), with the LED
flashing and the display updating for every count.count.

Operation Effect Diagram

Counter: 0

Counter: 16

Magnet

Counter: 0

Counter: 16

148

gfx.fillScreen(TFT_BLACK); This command fills the entire screen with black using the fillScreen()
method. TFT_BLACK is a predefined color constant in the LovyanGFX library. This ensures that
each screen update starts with a clean background.

setCursor(x, y, font): This method sets the starting position and font for text display.

• 60 is the X coordinate (horizontal offset from the left edge),

• 100 is the Y coordinate (vertical offset from the top),

• 4 is the font index (an optional parameter that likely specifies a particular font style).

gfx.setTextSize(1); Sets the text scaling factor. A value of 1 keeps the text at its original size.
Larger values scale the text proportionally.

gfx.setTextColor(TFT_WHITE); Sets the text color to white. TFT_WHITE is a predefined white
color constant in the LovyanGFX library.

gfx.printf("counter: %d", count); Uses the printf() function to format and print the text on screen.
It displays "counter: " followed by the value of count. The %d is a placeholder that inserts the
integer value of count in decimal format.

void updateCounterDisplay(int count) {
 gfx.fillScreen(TFT_BLACK);
 gfx.setCursor(60, 100, 4);
 gfx.setTextSize(1);
 gfx.setTextColor(TFT_WHITE);
 gfx.printf("counter: %d", count);
}

1. Display Initialization and Interface Update Function

Key Explanations

if (digitalRead(hall) == LOW) {
 delay(50);
 if (digitalRead(hall) == LOW) {
 while (digitalRead(hall) == LOW);
 count++;
 updateCounterDisplay(count);
 digitalWrite(redLed, HIGH);
 delay(200);
 digitalWrite(redLed, LOW);
 }
}

2. Hall Sensor Detection Logic

149

gfx.init(): This is the core call to initialize the LovyanGFX display system. It performs several key
steps: first, it establishes SPI communication with the ST7789 display controller at an 80MHz
clock speed, configures the display parameters for a 240x320 resolution, initializes the FT5x06
touch controller via I2C (address 0x38), and finally allocates memory for the display buffer.
Notably, this function automatically sets up the hardware interfaces based on the SPI pin
configuration defined earlier in the LGFX class (SCLK=6, MOSI=7, DC=16, etc.), and sends the
factory default initialization command sequence to the screen to ensure proper color mode
(RGB565) and scan direction.

pinMode(0, OUTPUT): sets GPIO0 as a digital output to control the display backlight circuit. In
the hardware design, this pin is usually connected to the gate of an N-MOSFET (such as
AO3400). By controlling the MOSFET’s conduction, it switches the power supply to the backlight
LED. Setting the pin to OUTPUT mode configures the GPIO as a push-pull output, capable of
driving up to 12mA according to the RP2040 chip specs, sufficient to directly drive a small
MOSFET. It’s important to note that pin 0 here refers to RP2040’s GPIO0, not the physical pin
number on the board.

digitalWrite(0, HIGH): outputs a 3.3V high signal to GPIO0, activating the backlight circuit. When
set high, the connected MOSFET fully conducts, allowing the backlight LED’s anode to receive
power (typically 5V supply). This action triggers two key effects: first, it enables the backlight
boost circuit (if the screen uses a constant-current driver), and second, it sets the PWM duty cycle
to 100%, achieving maximum brightness.

gfx.init();
pinMode(0, OUTPUT);
digitalWrite(0, HIGH);

3. Backlight Control and Display Initialization

Use a two-step digitalRead() check combined with a 50ms delay to implement debounce
handling.

while (digitalRead(hall) == LOW); Wait until the magnet moves away to prevent counting a single
trigger multiple times.

When a magnet is successfully detected:

• Increment the count (count++).

• Call updateCounterDisplay() to refresh the screen.

• Briefly flash the red LED to indicate a successful trigger.

This process is crucial to ensure the Hall sensor triggers accurately, resists interference, and
avoids duplicate counts.

150

After studying the code above, you have implemented a Hall effect sensor counting system
that updates the count in real time on the TFT screen using the format "counter: X". When a
magnet approaches the Hall sensor, the system triggers a count, while the red LED flashes
for 200ms as visual feedback. The design employs dual detection and delayed debounce
mechanisms to ensure counting is both accurate and reliable.

Complete Code

In this lesson, we use an additional library (LovyanGFX-develop), so it’s important to
include it before running the code to avoid compilation errors.

1. Download the Library

• Click the link below:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2

• Navigate to the /example/libraries directory and download the LovyanGFX-develop
folder

2. Add the Library to the Arduino Environment

• In the Arduino IDE, click on the File menu and select Preferences.

Programming Steps

Note: For detailed programming steps, you can refer to the programming process in the first lesson.

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

151

• Open the corresponding folder on your computer. Inside, you'll find a folder named
libraries – this is where Arduino stores third-party libraries.

• Copy or move the downloaded library folder directly into the libraries directory. Once
done, the Arduino IDE will automatically recognize and be able to use this library.

3. Upload and Run the Code(You can refer to the flashing steps from Lesson 1
(page 10-15) as a guide.)

After placing the library correctly, follow the upload steps from Lesson 1 to compile and
upload the code to your board.Make sure the compilation completes without errors
before running the program.

152

Lesson 21 - Smoke Alarm

Introduction
In this chapter, you'll learn the principles and implementation of an alarm system based
on the MQ2 smoke sensor. The system triggers a buzzer when it detects a certain level
of smoke in the environment. This lesson focuses on the basics of sensor signal
acquisition and alarm logic.

A gas sensor detects target gases via reactions that alter the electrical properties (eg:
resistance/capacitance/current) of sensing materials. MOS types rely on resistance
changes from gas adsorption; electrochemical sensors generate current via redox
reactions; infrared models measure light absorption at specific wavelengths. Signal
processing converts variations into concentration readings, offering high selectivity and
rapid response.

Working Principle of Gas Sensor

The buzzer generates sound by vibrating a diaphragm driven by an electrical signal.
When an alternating current is applied, the diaphragm vibrates rapidly due to magnetic
or piezoelectric effects, producing sound. The pitch and frequency are determined by the
current frequency, and it is commonly used for alerts or alarms.

Working Principle of Buzzer Operation

Hardware Used in This Lesson:

Gas Sensor

Buzzer

153

1. Prepare a safe smoke source (take extreme caution to avoid any fire hazard during
the process).

(In this demonstration, I used a lighter and extinguished the flame, allowing it to emit only
carbon monoxide.)

2. Slowly move the smoke source closer to the sensing head of the MQ-2 sensor.

3. Observe the system’s response: when the smoke concentration exceeds the preset
threshold, the buzzer should sound continuously as an alarm.

Operation Effect Diagram

Buzzer alarm

The gas you release
must be safe.

The gas you release
must be safe.

154

The analogRead() function returns an integer between 0 and 1023, corresponding to an input
voltage range from 0 to 5 volts.

To determine the actual voltage, the raw value is converted using the formula: sensorValue /
1023.0 * 5.0. This voltage is then used to estimate the gas concentration.

When detecting gases such as smoke, methane, or propane, the MQ-2 sensor’s analog output
voltage increases proportionally with the concentration of gas.

Significance: This is the core data-processing step for smoke detection—it determines whether
the system should trigger an alarm.

float sensorValue = analogRead(gas_pin);
float sensor_volt = sensorValue / 1023.0 * 5.0;

1. Analog Pin Reading and Voltage Conversion

Key Explanations

When the MQ-2 sensor’s output voltage exceeds 1.0V, it indicates the presence of a certain
concentration of smoke or gas in the air.

tone(pin, freq) sends a square wave of the specified frequency—1300Hz in this case—to the
buzzerPin, producing an audible alarm.

noTone(pin) stops the sound output from the buzzer.

Significance: This forms the core logic of the alarm response—using a simple voltage threshold to
deliver real-time audio warnings.

if (sensor_volt > 1.0) {
 tone(buzzerPin, 1300);
} else {
 noTone(buzzerPin);
}

Serial.print("Voltage: ");
Serial.print(sensor_volt);
Serial.println(" V");

2. Smoke Voltage Threshold Detection and Buzzer Alarm

3. Serial Output for Monitoring and Debugging

155

The current voltage reading is sent to the serial port, making it easy to debug or observe real-time
data using a serial monitor tool.

Based on the test results, the alarm threshold can be fine-tuned dynamically for better accuracy.

Significance: This feature is essential for debugging and calibrating the sensor, especially useful
during the development and testing phase.

After studying the above code, you've built a basic alarm system using an MQ2 smoke
sensor. It reads the analog voltage from the sensor and compares it to a 1.0V threshold. If
the voltage exceeds this value—indicating the presence of smoke—the system triggers a
1300Hz alarm sound through the buzzer. If not, the buzzer remains silent. Meanwhile, the
current voltage is continuously output via the serial port for monitoring and debugging
purposes.

You can refer to the flashing steps from Lesson 1 (page 10-15) as a guide.

Complete Code

Programming Steps

Kindly click the link below to view the full code implementation.

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Pico-2/tree/
master/example/pico_arduino_code

156

MAKE YOUR MAKING EASIER

