& ELECROW

AlEinZonerStante kit
fo@ArduinelVse@Nanual

* STEAM Education
o Open-source Hardware

Lessons Built-in modules

www.elecrow.com

Table of Contents

Introduction -~ 01
Getting Started - 02
Lesson 1-LED Control -~~~ -~~~ 07
Lesson 2 - Button Control LED -~~~ -~~~ -~ "
Lesson 3 - LED Breathing Light ------------------oooooooo o 15
Lesson 4 - LCD display -~~~ --- -~ - - oo 19
Lesson 5 - Moisture Monitor -~ - -~ -~ -~ - - - - oo oo 25
Lesson 6 - Intelligent street light -~~~ -~~~ 30
Lesson 7 - Ultrasonic ranging display -~~~ 37
Lesson 8 - Obstacle close range Alarm -~ -~~~ 44
Lesson 9 - Plant watering reminder system -~ - - 49
Lesson 10 - Brightness display -~~~ -~~~ 56
Lesson 11 - Temperature&Humidity detecting system - -~~~ 61
Lesson 12 - Servo control - --- - - - - - oo oo 68
Lesson 13 - IR control LED -~ - -~ -~ - - - - oo 73
Lesson 14 - Weather reminder -~ 81
Lesson 15 - Servo angle control - - 88
Lesson 16 - Polite automaticdoor - - -~ 95
Lesson 17 - PIR control light - - - - - -~ - -~ oo oo oo 99
Lesson 18 - Sound Reminder -~ -~ 103
Lesson 19 - Calculation ofacceleration - -~~~ -~~~ -- oo 107
Lesson 20 - Smart corridor light - - -~~~ — -~ - - - oo 13
Lesson 21 - Simple calculator - - - - -~ -~~~ -~ oo 19

Introduction

Welcome to read the user manual of All-in-one Starter Kit for Arduino. Let's start
learning about the All-in-one Starter Kit for Arduino development board and how
to use the sensors now!

Don't worry, this development board comes with 21 easy-to-follow, fun and
inspiring lessons that take you step by step through your knowledge. Here, you
will be taken to familiarize yourself with the electronic modules, exercise your
logical thinking, enhance your creative ideas, and program the functions of these
electronic modules.

From the very beginning to understand the installation of Arduino software, then
introduce the Arduino development board and various sensors, then learn the
programming functions of these sensors and the programming language used,
and finally how to realize the specific applications of these sensors. Each step of
the explanation is very clear, even if you are a beginner, you can quickly master
Arduino programming.

The all-in-one Starter Kit for Arduino product offers 15 electronic modules, each
module has its own unique features and functionality, designed for beginners and
ideal for getting started. In short, by learning this development board, you will
learn the basics and principles of sensors, understand important concepts such
as digital and analog signals, analog-to-digital conversion, programming logic,
and learn how to use some of the complex electronic modules. Most importantly,
you will start learning Arduino programming, which will help improve your logical
thinking skills.

In the programming section, we will use Arduino software for programming.
Arduino platform is one of the most popular open source platforms and easy to
use. It contains global hardware resources including hardware (various models of
Arduino boards) and software (Arduino IDE), which is one of the best choices for
programming learning.

01

Getting Started

Installing Arduino IDE

Download Arduino in Windows system

* STEP 1:

Login to Arduino official website, download Arduino.
Arduino official website: https://www.arduino.cc/en/software/

* STEP 2:

Select your computer's corresponding system to download, such as Window system.

* STEP 3:

Arduino Cloud Editor

Experience the Arduing IDE Online, Whethes youTe st home ar on the g0, code,

UPI0RG 8N 8CCESS your Projects anylIMe from your browser for free,

GO TO CLOUD EDITOR

LEARN MORE

Downloads

Arduino IDE 2.3.6

The new major release of the Arduino IDE Is faster and even
more powerfull In addition to a more modern editor and a
more responsive interface it features autocompletion, code
navigation, and even a live debugger.

For more detalls, please refer to the Arduino IDE 2.0

documentation.

Nightly bullds with the latest bugfixes are available through
the section below.

'SOURCE CODE

The Arduino IDE 2.0 Is open source and its source code is
hosted on GitHub.

DOWNLOAD OPTIONS

Window:
Windows »

Windows

Linux
Linux

macos
macos

Click JUST DOWNLOAD and select the save location to start the download.

33 35 $10 525

Download Arduino IDE & support its progress
e the 1.x reate in Maveh 2015, the Arduin IDE hat been downlaaced 88,795,604
TS — IMpressiel Help RS GEVEIODMENT WIh 3 donaton.

CONTRIBUTE AND DOWNLOAD

JUST DOWNLOAD

Oter

* STEP 4:

1. When installing Arduino, please locate the executable file with the .exe extension
within the folder where you previously saved, which is the Arduino installation package.

&) arduino-ide 2.3.6 Windows_64bit.exe

2. After double-clicking the installation package, this page will appear. Click on 'l Agree'.

9 Arduino Setup: License Agreement — X

Flease review the license agreement before installing Arduino. If you
.S accept all terms of the agreement, dick I Agree.

gENU LESSER GENERAL PUBLIC LICENSE -~
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms
and conditions of version 3 of the GNU General Public License, supplemented
by the additional permissions listed below.

L

Cancel Mullsaft Install System w30 | I Agree II

3. Check all options by default and click Next.

€D Arduino Setup: Installation Options — s

Check the compaonents you want to install and uncheck the components
oo you don't want to install. Click Mext to continue.

Select components to install: Install Arduino software
Install USB driver
Create Start Menu shortout
Create Desktop shortout
Assodiate .ino files

Space reguired: 541.6MB

Cancel fullsoft Install Swstem 3.0 < Badk | I Mext = I

4. Click on 'Browse' to select the installation location, it is recommended to install it on

any drive other than the C: drive. Then click 'Install .

ol

-

Setup will install Arduine in the following folder. To install in a different
folder, dick Browse and select another folder. Click Install to start the

installation.
Destination Folder

|C:‘Program Files (x86)\Arduino

Space required: 541.6MB
Space available: 34.3GB 2

Cancel < Back | | Install ||

Extract: netbuf.h
o
.]

== I

5. Installation Complete,click 'Close'.

& Ar

-

Completed
oo

Arduino IDE Introduction

}

6
2
O 5
4
B
@7’ 6 void loop() {
7 put your main cod
oo :
9
)

Ln1,Col1 X Noboard selected 0

0 Flie: This lets you create, open, save, and manage sketch files, access sample
code, adjust editor preferences, export compiled files, and exit the Arduino IDE—mak-
ing it easy to handle project files and configure your workspace.

© Edit: This s for editing your code, including undo, redo, cut, copy, paste, find
and replace, select all, as well as commenting and uncommenting code—helping you
modify your program quickly and efficiently.

0 Sketch: This handles compiling and uploading your code, allowing you to verify
syntax, upload programs to your board, manage libraries, and export build
results—streamlining your development and debugging process.

0 Tools: Choose your board model, serial port, and programmer, open the serial
monitor and plotter, manage libraries, and check board details—essential for hardware
setup and debugging.

© Help: Provide official Arduino reference materials, FAQs, troubleshooting
guides, and software version information to help users learn, use, and resolve issues
they may encounter during development.

@ Verify: Compile the Arduino code to check for syntax errors and issues without
uploading it, ensuring the code is correct and executable.

(7] Upload: Upload the compiled code to the Arduino board to run and test the
program on the actual hardware.

© Sketchbook: Used for managing and quickly accessing all saved Arduino
sketches, making it easy for users to open, edit, and organize their project code.

© Boards manager: Used to install, update, and manage various Arduino
board support packages, extending the IDE’s compatibility with different hardware.

@ Library manager: Used to search for, install, and manage Arduino libraries,
helping users easily integrate various functional modules and streamline the develop-
ment process.

0 Debug: Used to assist with code debugging by printing messages and errors
through the serial port, helping identify issues in the program and improving develop-
ment efficiency.

@ Search: The Search feature allows quick find-and-replace within the code,
making it easier to locate and edit specific content and boosting editing efficiency.

@ Serial Plotter: Used to plot numerical data sent from the Arduino board via
the serial port in real time, helping users visually analyze sensor readings and variable
changes.

@ Serial Monitor: Used for serial communication with the Arduino board,
allowing real-time sending and displaying of text to facilitate debugging and monitoring
program status.

Lesson 1 - LED Control

Introduction

In this lesson, we will focus on the programming practice of LED control. By writing code
to configure pins and design logical sequences, we will achieve alternating LED on/off
behavior at fixed intervals. Through this process, you will not only learn fundamental
methods of hardware control but also gain a deeper understanding of time management

and loop logic in embedded programming, laying a solid foundation for developing more
complex projects in the future.

Hardware Used in This Lesson:

Red LED

Working Principle of LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region and holes from the
P-type region recombine near the junction. During this recombination process, electrons
transition from a higher energy level to a lower one, releasing the excess energy in the
form of photons—producing light. The color (wavelength) of the emitted light is
determined by the energy bandgap of the semiconductor material. This is a direct
application of the phenomenon known as electroluminescence.

Operation Effect Diagram

Red LED

Red LED

Once the program runs successfully, you will see the LED on the All-in-one Starter Kit for
Arduino blinking—turning on for one second and then off for one second in a continuous
loop.

Key Explanations

1. Variable Definition

int LedPin » An integer variable named LedPin is defined with a value of 10,
indicating that the LED is connected to pin 10.

2. setup() Function

» The setup() function is executed once when the Arduino
void setup() { board starts up or is reset.

pinMode(LedPin, OUTPUT); The statement pinMode(LedPin, OUTPUT) configures pin
} 10 as an output, allowing the Arduino to send voltage to
this pin in order to control the LED's state (on or off).

3. loop() Function

» The loop() function runs repeatedly after setup() has
void loop() { finished. It performs the following operations:
digitalWrite(LedPin, HIGH); « digitalWrite(LedPin, HIGH): Sets pin 10 to a high voltage
delay(1000); level (5V or 3.3V), turning the LED on.
digitalWrite(LedPin, LOW); + delay(1000): Pauses the program for 1000 milliseconds
(1 second) while the LED remains lit.
delay(1000);
} « digitalWrite(LedPin, LOW): Sets pin 10 to a low voltage
level (OV), turning the LED off.
« delay(1000): Pauses again for 1 second while the LED
remains off.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200one%20Arduino

After you finish learning the above code, you can adjust the functions, such as modifying
the blinking interval time or adjusting the on-off mode of the bulb.

Uploading the Code

The code explanation is now complete. Next, we need to upload the code to the
All-in-one Starter Kit for Arduino so we can observe the hardware functions in action.

1. First, connect the All-in-one Starter Kit for Arduino to your computer using a USB
cable.

2. Open the Arduino IDE, click on “Tools,” and select the correct board option: “Arduino

Uno.” Also, choose the appropriate port number.

(The Arduino Uno board option is built into the Arduino IDE and will be visible by default.)
(In this example, the port is COM4, but yours may be different.)

3. Finally, click the “Upload” button.

File Edit Sketch Tools Help

20 TN

L_1_LED_controlino

int LedPin = 18;

pinMode(LedPin, OUTPUT);

2

3

4

5 void setup() {
6

8 I3

11 void loop() [
12

13 digitalrite(LedPin, HIGH);
14

15 delav(1000):

4. Once the upload is complete, you will see a “Upload successful” message displayed in the Arduino

IDE.

5. Now, you should be able to see the intended functionality demonstrated on your All-in-one Starter

Kit for Arduino.

Lesson 2 - LED Control

Introduction

In this lesson, we will use the All-in-one Starter Kit for Arduino to learn how to control an
LED using button input. The final goal is to achieve the following functionality: when the
button is pressed, it outputs a HIGH signal; when the button is released, it outputs a
LOW signal.

In this lesson, we will use the button to control the LED's state: the LED will turn on
when the button is pressed and turn off when the button is released.

Hardware Used in This Lesson:

Red LED

Working Principle of Button Control

A button generates signals through mechanical contacts or capacitive sensing. Mechani-
cal buttons rely on a metal dome or spring mechanism to create HIGH or LOW logic
levels when pressed or released, often requiring a debounce circuit to eliminate signal
fluctuations. Capacitive buttons detect changes in capacitance between electrodes. The
microcontroller (MCU) scans matrix buttons by reading the voltage levels of rows and
columns, or by reading ADC values, to determine which button is pressed. The system
distinguishes between short and long presses through software-based timing.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from

a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

Operation Effect Diagram

* Button Pressed:

* Button Released:

When you press and hold the button, the LED remains on. When you release the button,
the LED turns off.

Key Explanations

1. Variable Definition

» Two variables are defined:

int buttonPin = 7;

: : « buttonPin — the pin connected to the button (digital pin 7)
int LedPin = 10;

« LedPin — the pin connected to the LED (digital pin 10)

2. setup() Function
» The setup() function runs once when the Arduino starts up
void setup() { oris reset.

pinMode(LedPin, OUTPUT); In this function, the two pins are initialized:

pinMode(buttonPin, INPUT); « pinMode(LedPin, OUTPUT): sets pin 10 as an output to
} control the LED.

* pinMode(buttonPin, INPUT): sets pin 7 as an input to
read the button's state.

3. loop() Function

void loop() {
if (digitalRead(buttonPin))
digitalWrite(LedPin, LOW);

else
digitalWrite(LedPin, HIGH);
delay(100);
}

> Read Button State
Uses digitalRead(buttonPin) to check the voltage level of the button pin.

« If you've set pinMode(buttonPin, INPUT_PULLUP) (common practice for buttons without external
resistors):

« Button NOT pressed: The pin stays at HIGH (pulled up to 5V/3.3V).
« Button pressed: The pin connects to GND, so it reads LOW.
» Control LED Based on Button State
The LED behavior is inverted relative to the button’s physical state (because of INPUT_PULLUP):
« When the button is pressed (circuit connects to GND):

digitalRead(buttonPin) returns LOW — Execute digitalWrite(ledPin, HIGH) to turn the LED ON.

* When the button is not pressed (circuit open):

digitalRead(buttonPin) returns HIGH — Execute digitalWrite(ledPin, LOW) to turn the LED OFF.

v

Debounce & Timing
delay(100) pauses the program for 100 milliseconds. This helps:
* Debounce the button: Fixes “jitter” (false signals from a button bouncing during a press).

« Stabilize behavior: Ensures the LED doesn't flicker unpredictably, but note—this simple delay
isn’t the most advanced debounce method (libraries like Bounce2 are better for complex cases).

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, you can modify the functionality—for example, change it
so that pressing the button turns the LED on, and pressing it again turns the LED off.
Alternatively, after learning more advanced concepts later, you can use button inputs to
control other hardware components.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so that we can see the hardware functions in action.
The code upload steps for this lesson are the same as in Lesson 1—please refer to the
first lesson for detailed instructions.

After a successful upload, you will be able to use the button on the All-in-one Starter Kit
for Arduino to control the LED.

Functionality: When you press and hold the button, the LED stays on; when you release
the button, the LED turns off. If the LED does not work as expected, please ensure the
program is running correctly.

Lesson 3 - Breathing Led

Introduction

In this lesson, we will use a potentiometer with a maximum resistance of 10kQ to create
a breathing LED effect. When you turn the potentiometer knob from left to right, its
output voltage varies between 0V and 5V (VCC). We will use this varying voltage to
adjust the LED brightness and achieve the breathing light effect!

Hardware Used in This Lesson:

L Linear
> Potentiometer

RED LED

Working Principle of a Slide Potentiometer

A slide potentiometer adjusts resistance by changing the effective contact length on its
resistive element. As the sliding contact (wiper) moves along the resistive track, the
length of the resistive material in the current path varies, resulting in a change in total
resistance. In a linear potentiometer, resistance changes proportionally with the slider
position, while in a logarithmic type, it follows a nonlinear curve. The structure must
ensure reliable contact to avoid signal jitter or noise.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from
a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

Operation Effect Diagram

¢ Slide Potentiometer at the Far Left:

anlll Linear Potentiometer =1

Linear Potentiometer

=

Red LED

7

] Linear Potentiometer =1

Linear Potentiometer

As the potentiometer slider moves, the brightness of the LED changes accordingly. When
you slide it all the way to the right (maximum position), the LED reaches its brightest
state; when you slide it all the way to the left (minimum position), the LED turns off.

Key Explanations

1. Global Variables

” Use int to define pin numbers:

int LinearPin = A0;
* The slide potentiometer is connected to analog pin A0 (analog input 0).

int LedPin = 10;

» The LED is connected to digital pin 10.

2. setup() Function

void setup() {
Serial.begin(115200);
Serial.printin("Backpack init'd.");

pinMode(LedPin, OUTPUT);
pinMode(LinearPin, INPUT);

}

» Serial Communication: Establishes USB communication with the computer for debugging output.
Pin Mode Configuration:
» OUTPUT: Allows the Arduino to output voltage to the LED.
* INPUT: Allows the Arduino to read voltage from the sensor (potentiometer).
Note: To open the Serial Monitor and view relevant data:

1. Click the Serial Monitor button in the top-right corner of the Arduino IDE.

3. loop() Function

void loop() {
int adcValue;
int mappedValue;
adcValue = analogRead(LinearPin);
mappedValue = map(adcValue, 0, 1023, 0, 255);

analogWrite(LedPin, mappedValue);
mappedValue = map(adcValue, 0, 1023, 0, 10);
String Value = String(mappedValue);
delay(100);

Core logic:
» Read sensor value: analogRead(LinearPin) returns an integer from 0 to 1023.
» Map value range:

* The map() function linearly maps the input range (fromLow to fromHigh) to the output range
(toLow to toHigh).

 For example, map(512, 0, 1023, 0, 255) returns 127 (512 is roughly half of 1023, corresponding
to half of 255).

» PWM output: analogWrite(LedPin, mappedValue) adjusts the LED brightness using PWM:
» mappedValue= 0: LED is completely off.
» mappedValue= 255: LED is at maximum brightness.
* Intermediate values adjust brightness proportionally (e.g., 127 is about 50% brightness).

» Delay control: delay(100) makes the loop run every 100 milliseconds to avoid excessive reading
frequency.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200one%20Arduino

After studying the code above, you can customize the functionality—for example, use the

potentiometer to control additional hardware components. By combining multiple controls,
you can deepen your understanding and create more complex interactive projects.

L —
Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so that we can see the hardware functions in action.

The code upload steps for this lesson are the same as in Lesson 1—please refer to the
first lesson for detailed instructions.

After a successful upload, you will be able to use the slide potentiometer on the
All-in-one Starter Kit for Arduino to control the LED brightness.

Functionality: As you move the potentiometer slider, the LED brightness will change
accordingly. When slid all the way to the right (maximum position), the LED will be at its
brightest; when slid all the way to the left (minimum position), the LED will turn off. If the
LED does not work as expected, please ensure the program is running correctly.

Lesson 4 - LCD Display

Introduction

In this lesson, we will use the LCD1602 module on the development board to implement
text display functionality. This module communicates with the board via the 12C protocol,
requiring only two signal lines (SDA and SCL) for data transmission, which simplifies
wiring and reduces power consumption. The LCD supports a 16-column by 2-row
character display and can show letters, numbers, and symbols using standard ASCII
codes. With its dedicated driver library, it enables features such as cursor positioning,
screen clearing, and backlight control. Its intuitive interface and ease of operation make
it ideal for information visualization in embedded systems.

Hardware Used in This Lesson:

¢
g

w _BE_g = m
00 i—

o s |
-4 = i A e

T : = = = 1
i mgmugz* = .g u.k @
4

SICEEcF =
B - o R e,
e/ | BR B BRI || 2

T e e e

LCD module

L —
Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even
in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Operation Effect Diagram

First,
display “HELLO WORLD”:

Second,
display “Bye Bye”:

Finally, turn off the LCD screen:

T T K

o b N x
SEemer ‘
\ _Eﬂ Eﬂ o T

Once running successfully, you will see the LCD light up and display “HELLO WORLD”
on the first line. After one second, “Bye Bye” will appear on the second line. Another
second later, the LCD will clear the screen and turn off. If the LCD does not work as
expected, please ensure the program is running correctly.

Key Explanations

1. Library and Object Initialization

» The Adafruit_LiquidCrystal library supports multiple
#include "Adafruit_LiquidCrystal.n" LCD interfaces, including parallel, I2C, and SPI.

Adafruit_LiquidCrystal lcd(1); The parameter 1 in lcd(1) represents the 12C bus

number or channel ID being used.

2. setup() Function

void setup() {
Serial.begin(115200);
while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);
}

Serial.printin("Backpack init'd.");
Icd.setCursor(0, 0);
Icd.print("HELLO WORLD");
delay(1000);

Icd.setCursor(0, 1);
Icd.print("Bye Bye");

delay(1000);
Icd.clear();
Icd.setBacklight(0);

» nitialization Process:

* Use Icd.begin(16, 2) to configure the LCD for 16 columns and 2 rows. This initializes the LCD and
sets the display dimensions.

» Use a while loop to check if the initialization is successful; if it fails, prompt the user to check the
wiring.
» Display Control:

* Icd.setCursor(col, row): Sets the cursor position, where col (column) and row (row) both start from
0.

* Icd.print(): Prints a string at the current cursor position. Supports ASCII characters such as letters,
numbers, and symbols.

» Backlight Control:
* Icd.clear(): Clears the screen and resets the cursor to the top-left corner (0,0).

* |cd.setBacklight(0): Turns off the backlight (0 = off, non-zero = on).

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, you can customize the functionality—for example, by
integrating other hardware discussed later, you can display sensor data collected from
various modules directly on the LCD screen. This will help you create more interactive
and informative embedded systems.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since this lesson uses an LCD screen that requires additional library files for proper
operation, you need to install the necessary libraries before uploading the code.

Library Installation Steps:

Follow the illustrated steps to download the Adafruit_LiquidCrystal library (version 2.0.4),
which is needed to drive the LCD screen.

Fie] it Shech Took Help

[avasan L_4_LCD_displayino.

[sssorea 12 L vincuce “aafrus L lnairysal
Type: Al v
Topic: Al hd

adafruit_LiquidCrystal led(1);

"
H
4
5 vold setup() {
. & | 4/ put your setup code here, to run once:
Liquidc: 1l by Arduine, Adafruit

o g 7 | sertal.beginqaisaeey:
5 | while (lca.begingis, 2)) (

Miows communicatian with alphanumerical kquid
Ds)

,[\m:ma I\I:;‘rg \a‘\l:ﬁ:’lml 12 j-.:m.;:pim»;'(mm net inlt backpack. Check wiring.™);
Mrs info iR
(o} # |9
107 w 12 serial.println(Backpack init’d.");
13| led.setcurson(s, 8);
14 lcd.print("HELLD WORLD");
15 | celayqaeon);
Adafrult LiguidCrystal by Adafnit 16 | led.setcursone, 13;
Fork of LiquicCrys<al HD4780. compatibe LCD ar | Aed-prdmtihe: ety

drner lbrary, now with s 18 | delay(1008);
i 0-

19 | led.clear(d;
20 | lcd.setsacklight(e);
a g
n
3 votd losp() {
22 | /7 put your main code here, to run repeatedly
AsyncLiquidCrystal by Pauio Casta, :;)
Arduino, Adafruit
Allows communication with alphanumerical iquid L
crystal displays (LCDS), ih a non-blocking war.
Version o Arduinos LiqudCryatal wih an..
More nfa ==

When downloading, also ensure that all dependent libraries are installed alongside it.

Install library dependencies x

The library Adafruit LiquidCrystal:2.04 needs some other dependencies currently not installed:

- Adafruit BusiO
- Adafruit MCP23017 Arduino Library

Would you like to install all the missing dependencies?

(INSTALL WITHOUT DEPENDENCIES)

After installation, you can find the downloaded libraries in the directory set by the Arduino
IDE.

(] | Documents > Arduino > libraries > I

[@& @ W NSt

Name Date modified Type Size
7 Adafruit MCP3008 6/19/2025 12:02 PM File folder
7 Adafruit_MCP23017_Arduino_Library 6/19/2025 12:03 PM File folder
77 Adafruit_Buslo 6/19/2025 12:03 PM File folder
7 Adafruit_LiquidCrystal 6/19/2025 2:31 PM File folder

(The download path is determined by the path set in the Arduino IDE.)

G4 Sheten Tooks_Help
 New Sketch [%
New Gl Sketch Alt-CileN = ‘
jayIno
Open. Cu0 ALLED ey
1 sinclude “Adafrult_LiguidCrystal h
Open Recent .
Sketehbosk v 3 adafruit_Uiuiderystal led(1);
[— v a
o ! e :
Close cutew . b
B 6 setup code here, to run once:
Swe Cotes 7 in(11s280);
Iphanumenicalquid 8 | while (11cd.begin(6, 2)) {
bsaionei 7 Bksbaieniie "";;‘“"":E"“] a Serfal.printin{"Could not init backpack. Check wiring.”);
Cttomma U0 DUCCOTAL 10 delay(s0);
u)
Adnnced | 12 | Serlal.printin(“Backpack init'd.™):
it e 1| led.setCursor(a, 8);
_ 14| led.print(THELLO WORLD™);
18| delay(ieea);
Adafruit LiquidCrystal by Adafuit 16 | led.setcursor(d, 1):
N 17| lcdprine(aye tyem);
18| delay(1000);
Fork of LquidCrystal HOATHO-compate LCD 3 || gepen:
I SRR T ca.clear();
of LiquidCrystal HD44780-compatible LCD drive... 20 led. setBacklight(@):
More nfo u)
2
204 v REMOVE 23 . ookd Tnoey
28| /7 put your maln code here, to run repeatedly:
2
%}
AsyncLiquidCrystal by Pao Costa iz

Preferences x

Setiings | Network

Sketchbook location:
C\Users\14175\Documents\Arduino |
0 Show files inside Sketches
Editor font size: 14
Interface scale: BAutomatic 100 %
Theme Light v
Language English | (Reload required)
Show verbose output during B compile [upload
Compiler warings None v
() Verify code after upload
Auto save
() Editor Quick Suggestions
Additional boards manager URL: i ino-pi [&]

) @B

With the libraries installed, you can now upload the code.

The code upload process for this lesson is the same as in Lesson 1 — please refer to
that for detailed instructions.

Expected Result:

After a successful upload, the LCD on the All-in-one Starter Kit for Arduino will light up,
displaying “HELLO WORLD” on the first line. After one second, “Bye Bye” will appear on
the second line. Another second later, the LCD will clear the display and turn off.

If the LCD does not behave as expected, please double-check that the libraries are
properly installed and the program is running correctly.

Lesson 5 - Moisture Monitor

Introduction

In this lesson, we will use an LCD module together with a soil moisture sensor to monitor
soil moisture levels. When the sensor is inserted into the soil, the LCD will continuously
display the moisture readings in real time. These values can be used to assess the

condition of the soil.

Hardware Used in This Lesson:
LCD module

Soil Moisture Sensor

Working Principle of the LCD Screen

The LCD1602 screen (16x2 character display) operates based on the electro-optical
effect of liquid crystals. By applying an electric field, the orientation of the liquid crystal
molecules is altered, resulting in visible display changes. Internally, the module consists
of the LCD panel, a controller (such as the HD44780 or a compatible chip), driver
circuits, and a backlight module.

The controller receives commands and data from a microcontroller (MCU) and, via the
driver circuits, applies electrical signals to the segment and common electrodes of the
LCD. Under the influence of the electric field, the liquid crystal molecules twist or align in
specific ways, changing how much light passes through. This creates light or dark pixels,
which combine to form characters or symbols.

The backlight module (usually an LED) provides illumination to ensure visibility in
low-light conditions. Data transmission to the LCD is done via parallel or serial interfaces
(such as 12C or SPI). The MCU sends commands (e.g., to set display mode or cursor
position) and content (ASCII character codes) according to protocol, and the controller
processes these to light up the corresponding pixels, rendering text in the 16-column by
2-row display area.

Working Principle of the Soil Moisture Sensor

A soil moisture sensor determines water content by detecting changes in the soil’s
physical or electrical properties. The core principle is based on the influence of moisture
on the soil's conductivity and dielectric constant. For example, resistive sensors
measure moisture by detecting resistance changes between metal electrodes—higher
moisture leads to lower resistance. Capacitive sensors detect variations in dielectric
constant, which alter the sensor’s capacitance. More advanced methods such as TDR
(Time Domain Reflectometry) and FDR (Frequency Domain Reflectometry) calculate
moisture levels based on the propagation characteristics of electromagnetic signals in
the soil. These physical changes are ultimately converted into electrical signals,
providing quantitative moisture data for applications such as agricultural irrigation and
environmental monitoring.

Operation Effect Diagram

When the soil moisture sensor is properly connected to the designated A3 interface, the
system will begin collecting data from the sensor and display it on the LCD screen.

You should observe the LCD continuously showing the values obtained from the soil
moisture sensor.|f this does not occur, please ensure that the program is running
correctly.

Key Explanations

1. Global Variables

#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal Icd(1);

int sensorPin1 = A3;
int Pin1Value = 0;

» LCD Initialization: The LCD is controlled via the 12C interface, and it's important to ensure that the
12C address matches the one used by the 12C adapter module.

» Sensor Pin: Analog pin A3 is used to read the analog signal from the soil moisture sensor.

2. Global Variables

void setup() {
Serial.begin(115200);
while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);

}

Serial.printin("Backpack init'd.");

pinMode(sensorPin1, INPUT);
}

” LCD Initialization: The function lcd.begin(16, 2) sets the LCD to 16x2 character mode. A while
loop is used to ensure the initialization is successful before proceeding.

> Sensor Configuration: pinMode(sensorPin1, INPUT) declares A3 as an input pin for reading
sensor data.

Note: To learn how to set the baud rate and view Serial Monitor output, please refer back to Lesson
3 for a detailed review!

LCD Screen Initialization:while (!lcd.begin(16, 2))

Icd.begin(16, 2): Attempts to initialize the LCD screen. The parameters 16 and 2 specify that the
display has 16 columns and 2 rows.

“I”: Logical NOT — llcd.begin(...) means “if initialization fails.”

while loop: If initialization fails, the loop continues to execute the code inside it repeatedly (until the
LCD initializes successfully or the program halts).

Action When Initialization Fails

Serial.printIn("Could not init backpack. Check wiring

Serial Output: The program prints an error message to the Serial Monitor:"Could not init backpack.
Check wiring."

This indicates that LCD initialization failed and prompts the user to check the wiring connections.

Action When Initialization Succeeds

Serial.printin("Backpack init'd.");

When Icd.begin(16, 2) returns true (indicating successful initialization), the program exits the while
loop and prints "Backpack init'd." to the Serial Monitor, confirming that the LCD has been
successfully initialized.

3. loop() Function

void loop() {
Pin1Value = analogRead(sensorPin1);
Serial.print("sensor1 =");
Serial.printin(Pin1Value);
String Pin1String = "A3:" + String(Pin1Value);

Icd.clear();
Icd.setCursor(0, 0);
Icd.print(Pin1String);
delay(1000);

> Sensor Reading:analogRead(sensorPin1) returns an ADC value between 0 and 1023,
corresponding to an input voltage range of 0 to 5V.

> LCD Display:

Icd.clear(): Clears the LCD screen.

Icd.setCursor(0, 0): Positions the cursor at the top-left corner (column 0, row 0).

Icd.print(): Displays a formatted string, such as "A3:512", showing the current sensor reading.
> Delay Control:

delay(1000): Pauses the program for 1 second to update the display once per second, preventing
excessive refresh rates.

N, o oo
Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, you should have a deeper understanding of how to

display information on the LCD. Moving forward, you can apply this knowledge to show
data collected from various sensors on the LCD screen.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so that we can observe the hardware functions in
action.

This lesson also requires importing the Adafruit_LiquidCrystal library. The download
and installation process is the same as in Lesson 4—please refer to that lesson for
detailed steps.

After a successful upload, you will be able to see the soil moisture sensor data
displayed on the LCD screen of the All-in-one Starter Kit for Arduino.

L
Lesson 6 - Intelligent Street Light

Introduction

In this lesson, you will learn how to obtain light intensity data from a light sensor module
and use this information to control the LED’s on/off state. By defining different brightness
thresholds, you can achieve intelligent LED control—activating or deactivating the LED
as needed to prevent unnecessary power consumption and promote energy efficiency.

Hardware Used in This Lesson:

Light Sensor

RED LED

Working Principle of the Light Sensor

The light sensor operates based on the photoelectric effect in semiconductor materials.
When light photons strike the photosensitive element (such as a photoresistor or
photodiode), the photon energy excites electrons in the semiconductor, generating free
electrons and holes. This changes the electrical characteristics of the component—such
as resistance, current, or voltage—effectively converting light signals into electrical
signals. For example, a photoresistor’s resistance decreases as illumination increases,
while a photodiode under reverse bias exhibits an increase in reverse current proportion-
al to light intensity. These changes are processed by circuits to produce analog or digital
outputs.

Working Principle of the LED

The LED (Light Emitting Diode) is based on a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from

a higher energy level to a lower one, releasing excess energy as photons, which is
perceived as light emission. The color (wavelength) of the emitted light is determined by
the semiconductor material’'s bandgap. This is a direct application of electroluminescence.

Operation Effect Diagram

* When an object blocks the light sensor, the LED lights up.

Red LED

* When the light sensor is exposed to light, the LED turns off.

-]
-
7)

After running successfully, you will see the LED turn on when you cover the top of the
light sensor to simulate low-light conditions. When you remove your hand to simulate a
well-lit environment, the LED will turn off.

Key Explanations

1. Global Variables and Initialization

#include <BH1750.h>
BH1750 lightMeter(0x5c);

float lux;

Sensor Initialization: Communicate with the sensor via the 12C address 0x5C.

BH1750 lightMeter(0x5c); — Creates a BH1750 light sensor object named lightMeter
and sets its 12C address to 0x5C.

12C (Inter-Integrated Circuit) transfers data using only two bidirectional signal lines:
* SDA (Serial Data Line): carries the data.
* SCL (Serial Clock Line): synchronizes the timing of data transfer.

12C supports communication with multiple devices on the same bus, where each
device has a unique address. The master device selects the target slave device by its
address to perform two-way data exchange. Its main advantages are simple wiring, low
cost, support for hot-swapping, and operation across low to high speeds.

In simple terms:

12C is like a “chat channel” built with two wires: one wire (SDA) for sending messages,
and another wire (SCL) for keeping the rhythm. Every device connected to these two
wires has its own “house number” — the 12C address.

Why is the address needed?

Imagine a group of people talking in the same room. To get someone’s attention, you
need to call their name. Similarly, the 12C bus may have multiple devices such as
temperature sensors and displays. When the master controller wants to send a

command to a particular device, it calls out that device’s “address” (e.g., 0x5C). Only
the device with the matching address “responds,” while others ignore the message.

2. setup() Function

void setup() {
Serial.begin(115200);
Wire.begin();
if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c, &Wire)) {

Serial.printin(F("BH1750 Advanced begin"));

}else {
Serial.printin(F("Error initialising BH1750"));

}
pinMode(LedPin, OUTPUT);

}

»12C Communication: Wire.begin() initializes the 12C bus, enabling the Arduino to
communicate with the sensor.

» Sensor Configuration:
BH1750::CONTINUOUS_HIGH_RES_MODE
« sets the operating mode to continuous high-resolution mode.

« Continuous mode: The sensor continuously measures light without needing repeated
triggers.

« High resolution: Provides high precision with 1 lux accuracy.
» Common Modes:

* CONTINUOUS_HIGH_RES_MODE — high precision (1 Ix) continuous
measurement.

*« CONTINUOUS_LOW_RES_MODE — lower precision (4 Ix) but faster continuous
measurement.

* ONE_TIME_HIGH_RES_MODE—single high-precision measurement.

« lightMeter.begin() is used to detect whether the sensor is properly connected and ready.

3. loop() Function

void loop() {
if (lightMeter.measurementReady(true)) {
lux = lightMeter.readLightLevel();
Serial.print("[-] Light: [");
Serial.print(lux);
Serial.printin("] Ix");

}
delay(10);

Light Measurement Logic:

» measurementReady(true): Checks whether the measurement is complete; if not, it waits
automatically until the data is ready.

« readLightLevel(): Returns the current light intensity value in lux (Ix).

Note: The reason for adding serial print statements is to facilitate data monitoring and
debugging.

Serial.print("[-] Light: [");

Serial.print(lux);
Serial.printin("] Ix");

These three lines of code enable you to view the obtained light intensity data in the Serial
Monitor, preparing for subsequent program logic that makes decisions based on the light
levels.

LED Control Logic:

* When the light intensity is below 100 lux

if (lux <= 100)

digitalWrite(LedPin, HIGH): (e.g., at night or in a dark room), the LED
A turns on.

digitalWrite(LedPin, LOW); » When the light intensity is above 100

lux, the LED turns off.

Note:

if (condition) {
/I Code executed when conditions are met

}else {
/I Code executed when the condition is not met

}

This is similar to a real-life scenario: "If it rains tomorrow, take an umbrella; otherwise,
don't."

Execution Logic:
« First, check if the condition is true (non-zero).
« If true, execute the code inside the if block.

« If false, skip the if block and execute the code inside the else block.

L —
Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After mastering the above code, you can expand the functionality by using the light
sensor to control and interact with more hardware devices.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so that we can see the hardware functions in action.

Since the photosensitive sensor used in this lesson requires additional library files for
driving, we need to add appropriate library files to ensure the code runs normally before
uploading it.

Follow the steps shown in the figure to download the BH1750 library (version 1.3.0). This
will allow you to use the library's interfaces to drive the photosensitive sensor.

File Edit Sketch Took Help

¢ Ardui

LIBRARY MANAGE L_6_Intelligent_street lightino e
2 #include <BH1750.h>
Type: Al v 3 BH1758 lightMeter(exsc):
Topic: Al v 2 float lux;
| |
BH1750 by Christopher G [int Ledpin - 20;
ES 7 void setup() [f
e e 8 /1 put your setup code here, to run once:
light sensor breakout boards ° Sorzll A
containing the BH1750FV1 IC... 10 uire.begin();
More info 3 1
12 I/ put your main code here, to run repeatedly:
130 v 13 if (lightMeter.begin(BH1758: :CONTINUOUS_HIGH RES_MODE, ©x5c, &Mire)) {
14 Serial.println(F("BH1756 Advanced begin"));
15 } else {
16 Serial.println(F("Error initialising BHI750"));
Artronshop_BH1750 P 3
by ArtronShop Co. Ltd . .
18 pintode(LedPin, OUTPUT);
Arduino library of BH1750 19
Ambient Light (Lux) Sensor
Arduino library of BH1750... 20
More info 21 void loep() {
22 if (lighttleter.measurementReady(true)) {
100 v 23 lux - lightMeter.readLightlevel();
2 serial.print("[-] Light: [");
25 serial.print(lu
2 serial.println(“] 1x");
BH1750FVI by P 3
PeterEmbedded e deley(10);

After installation, you can find the downloaded library files in this path

(m] I > Documents » Arduine » libraries > I
[B & 0 Nosetv = View~ e
=
Name Date modified Type Si
7 Adafruit_MCP3008 6/19/2025 12:02 PM File folder
= Adafruit_MCP23017_Arduinc_Library 6/19/2025 12:03 PM File folder
7 Adafruit_BuslO 6/19/2025 12:03 PM File folder
T Adafruit_LiquidCrystal 6/19/2025 2:31 PM File folder

H1750 6/19/2025 4:25 PM File folder

(The download path is determined by the path set in the Arduino IDE.)

[for et o v

] Hew Skech CueM o %
New Coud Sketch Alt=Ci=N T -
dsplay no
Open. a0 S
1 winclude “Adafrult_Liguidcrystal.h”

Open Recent .
Sketchbaok v | 3 Adafruft_UquidCrystal led(1);

l 4
Examples v
ey e 5 void setun() (

| P & | /f put your setup code here, to run once:
Save Cutes 7 115288);

Iphanumericalliquid 8 egin(16, 2)) {

Save. oGS by alowsan

e E

tln("Could not init backpack. Check wiring.");

L) = 12 | Serial.println("packpack init’d.”):
it cea 1| ld.setcursor(e, 8);
—_— 14 Led.print(“HELLO WORLD™);
15| delay(ieee);
Adafruit LiquidCrystal by Adsfut 16 | ledsestursor(e, 2);
— 17| dcapeint(aye Byet);
_ 18 delay(1060):

Preferences X

Setiings | Network

Sketchbook location: |

C\Users\14175\Documents\Arduino
O Show files inside Sketches.

Editor font size: 14

Interface scale: MAutomatic 100 %

Theme: Light ~

Language: English ~ | (Reload required)

Now that the library is downloaded, you can upload the code.

The upload steps are the same as in Lesson 1—please refer to it for guidance.

After a successful upload, you can control the photosensitive sensor on the All_in_one
Starter Kit for Arduino to turn the LED on/off.

Implementation:
When you cover the light sensor to simulate low-light conditions, the LED will turn on.
When you remove your hand to simulate adequate lighting, the LED will turn off.

If this does not occur, check to ensure the program is executing correctly.

Lesson 7 - Ultrasonic Ranging Display

Introduction

In this lesson, we will learn how to use an ultrasonic module. With this module, we can
measure the distance between a flat surface in front of the module and the module itself.
We will create an ultrasonic distance meter and display the measured distance on an
LCD module.

Hardware Used in This Lesson:

B8

LCD module

UttrasoriERanging

ultrasonic sensor module

iy 5 *EaEm.ﬁ- L.L

G Jer S
‘g i wm o =

Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even

in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working Principle of the Ultrasonic Sensor

The ultrasonic sensor operates based on the emission and reception of reflected
ultrasonic waves. Inside the sensor, a piezoelectric transducer is excited by an electrical
signal to produce high-frequency mechanical vibrations, emitting ultrasonic waves at
frequencies above 20 kHz. When these ultrasonic waves encounter an obstacle, they
reflect back as echoes. The transducer receives the echo and converts the mechanical
vibrations back into electrical signals.By measuring the time interval between emitting and
receiving the signal (the transit time), and knowing the speed of sound in the medium
(approximately 340 m/s in air), the distance to the obstacle is calculated using the
formula:

Distance = (Speed of Sound x Time) + 2

This principle is similar to echolocation. The sensor enables non-contact distance
measurement and is widely used in obstacle avoidance, liquid level detection, industrial
flaw detection, and more. Thanks to the ultrasonic waves’ strong directionality and good
penetration, it achieves accurate distance measurements.a higher energy level to a lower
one, releasing excess energy as photons, which is perceived as light emission. The color
(wavelength) of the emitted light is determined by the semiconductor material’s bandgap.
This is a direct application of electroluminescence.

Operation Effect Diagram

* No object blocking:

* Object blocking:

After successful operation, you will observe the phenomena described above.

You will see the LCD screen continuously updating the distance data measured by the
ultrasonic sensor. As the flat surface in front of the ultrasonic module moves, the
measured distance value will change accordingly.

Key Explanations

1. LCD Section

The Adafruit LCD library is included here,
#include "Adafruit_LiquidCrystal.h" and an LCD object is initialized with the
Adafruit_LiquidCrystal Icd(1); parameter 1, which indicates that the LCD
display is connected via the 12C interface.

String NULL_TXT ="

A string named NULL_TXT is defined to help clear the LCD screen. This string contains
16 spaces because the LCD has 16 columns, and writing it effectively blanks out a full
line on the display.

void LCD_print(String txt1, String txt2)
{

Icd.setCursor(0, 0);

lcd.print(" ");

Icd.setCursor(0, 1);
lcd.print(" ");

Icd.setCursor(0, 0);
Icd.print(txt1);

Icd.setCursor(0, 1);
Icd.print(txt2);

This is a custom function named LCD_print, used to display two lines of text on the LCD
screen.

First, lcd.setCursor(0, 0) and Icd.setCursor(0, 1) position the cursor at the beginning of
the first and second lines, respectively.

Then, NULL_TXT is printed to each line to clear any previous content.

Finally, the input strings txt1 and txt2 are printed to the first and second lines of the
display.

2. Ultrasonic Section

#include <HCSR04.h>

const byte triggerPin = 6;

const byte echoPin = 5;

UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin);

The HCSRO4 library is included to operate the ultrasonic sensor.
The trigger pin (triggerPin) and echo pin (echoPin) are defined.

An UltraSonicDistanceSensor object is initialized using these pins.

unsigned long previousMillis = 0;
const long interval = 500;

The variable previousMillis is defined to record the last time the LCD was updated.
The constant interval is defined to specify the LCD update interval, which is set to 500
milliseconds.

float distance = distanceSensor.measureDistanceCm();
String Value = String((int)distance);

The method measureDistanceCm is called to measure the distance, and the result is
stored in the distance variable.

The distance value is then converted to an integer, and subsequently converted to a
string named Value so it can be displayed on the LCD.

unsigned long currentMillis = millis();

if (currentMillis - previousMillis >= interval) {
previousMillis = currentMillis;
Icd.setCursor(0, 1);

led.print(" ");
Icd.setCursor(0, 1);
Icd.print(Value);

The current time currentMillis is retrieved and compared with previousMillis to
determine whether the LCD update interval has been reached.

If the interval has passed, previousMillis is updated, and the cursor is moved to the
beginning of the second line of the LCD.

A space is printed first to help clear any old content, followed by printing the new
distance value.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, you can further enhance its functionality — for example,

by using ultrasonic distance detection to trigger other hardware when a certain distance
threshold is reached. You can also optimize the provided code to improve measurement
accuracy or responsiveness.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since the ultrasonic sensor used in this lesson requires an additional driver library, you
need to install the appropriate library before uploading the code to ensure it runs
correctly.

Follow the steps shown in the diagram to download the HCSRO04 library (version 2.0.0).
This will allow you to call the library's interfaces to drive the ultrasonic sensor.

need to install the appropriate library before uploading the code to ensure it runs
correctly.

File | Edit Sketch Tools Help

LIBRARY MANAGER L_7_Ultrasonic_ranging_display.ino
5 1ca.setLursor(e, ©);
(e 7, o | ieaprinec: >
E Type: Al v 10 lcd.setCursor(@, 1);
Toic Al o 1 lcd.print(” ")
12
| 13 lcd.setCursor(@, 8);
HCSRO4 by Martin Sosic 12 led.print(txt1);
1 <sosicmartin@gmail.com> 15 Lcd.setcursor (9, 1);
Library for HC-SRO4 ultrasonic 16 lcd.print(txt2);
distance sensor. You can 17
measure distance in.
More info 3 18
10 JErvesmeceensooay] rasonicHREER EEERRER ST)
200 v 20 #include <HCSR@4.h>
21

22 // Initialize sensor that uses digital pins 13 and 12.
23 const byte triggerPin = 6;

Afstandssensor - 24 const byte echoPin = 5;

HCSRO4 by Jorgen. 25 UltraSonicDistanceSensor distanceSensor(triggerPin, echopin);
Bibliotek til HC-SR04 ultralyd 26

afstandssensor. Du kan male 27 int Cursor_position = 8;

afstanden tl objekter mellem ... 28 int flag - ©;

More info 29

w2 v @Eem 30 void setup() {
31

/1 put your setup code here, to run once:
32 Serial.begin(115200);

After installation, you can find the downloaded library files in this path.

Q » Documents > Arduino > libraries >

()] W T oSort v = View v ees
Name - Date modified Type Size
7 Adafruit MCP3008 6/19/2025 12:02 PM File folder
7 Adafruit MCP23017_Arduino_Library 6/19/2025 12:03 PM File folder
7 Adafruit BuslO 6/19/2025 12:03 PM File folder
7 Adafruit_LiquidCrystal 6/19/20252:31 PM File folder
0 BHITS0 6/19/2025 4:25 PM File folder
~ HCSRO4 6/19/2025 5:04 PM File folder

(The download path is determined by the path set in the Arduino IDE.)

Edit Sketch Tools Help

1 New Sketch cieN jno -
New Cloud Sketch Alt+Ctrl+N
L_4_LCD_display.ino
Open.. [
1 #include "Adafruit_LiquidCrystal.h"
Open Recent > 5
Sketchbook vl 3 Adafruit_LiquidCrystal lcd(1);
Examples >l 4
5 void setup() {
Close. Cul=w Bt 6 // put your setup code here, to run once:
Save Ctlss 7 Serial.begin(115200);
Iphanumerical liquid 8 while (!lcd.begin(16, 2)) {
Save hs. CtrbeShife=S -
2 ”’:’YI‘:""W;;" o ° Serial.println(“"Could not init backpack. Check wiring.");
CteComma [0 LiquidCry=tal.. 10 delay(50);
Advanced > n i
ranee) 12 Serial.println("Backpack init'd.");
Quit cul+Q 13 lcd.setCursor(e, @);
14 1lcd.print("HELLO WORLD");
15 delay(1000);
Adafruit LiquidCrystal by Adafruit 16 | lcd.setcursor(e, 1);
204 instaled 17| led.print("Bye Bye");
18 delay(1000);
Fork of LiquidCrystal HD44780-compatible LCD o - nayi %
driver library, now with support for ATtiny85. Fork cd.clear(); |
of LiquidCrystal HD44780-compatible LCD drive... 2 1cd. setBacklight(e);
More info u
2
204 v REMOVE 35 void Toop() {
22 // put your main code here, to run repeatedly:
25
26}
AsyncLiquidCrystal by Paulo Costa, 5

Preferences X

Setlings | Network

Sketchbook location:
c\Users\14175\Documents\Arduino
(OJShow files inside Sketches

BROWSE

Editor font size: 14

Interface scale G Automatic 100 %

Theme: Light ~

Language: English v (Reload required)

Show verbose output during B2 compile B upload

Compiler wamings None

() Verify code after upload

[Auto save

JEditor Quick Suggestions.

Addtional boards manager URLS: /g ino-pi a

sy o)

Now that the library is downloaded, you can upload the code.
The upload steps are the same as in Lesson 1—please refer to it for guidance.

After a successful upload, the LCD screen on the All_in_one Starter Kit for Arduino will
display distance data collected by the ultrasonic sensor.

Implementation: You will observe the LCD screen continuously updating with distance
measurements from the ultrasonic sensor. As an object in front of the ultrasonic module
moves, the displayed distance value will change accordingly. If this does not occur,
check to ensure the program is executing correctly.

Lesson 8 - Obstacle Close Range Alarm

Introduction

In this section, we will delve deeper into the ultrasonic module and learn how to
coordinate its operation with other modules. We will use the distance data obtained from
the ultrasonic module to control the activation and deactivation of the relay module and
LED module, thereby implementing an ultrasonic obstacle avoidance function.

Note: This lesson builds upon the previous lesson to expand functionality!

Hardware Used in This Lesson: %

LCD module

il 5 *rﬁ;?%ﬁ-g

| T, . n:nf .
SN ek =K

RED LED

EC-D5

@)

.
ultrasonic sensor module

Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even

in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working Principle of the Ultrasonic Sensor

The ultrasonic sensor operates based on the emission and reception of reflected
ultrasonic waves. Inside the sensor, a piezoelectric transducer is excited by an electrical
signal to produce high-frequency mechanical vibrations, emitting ultrasonic waves at
frequencies above 20 kHz. When these ultrasonic waves encounter an obstacle, they
reflect back as echoes. The transducer receives the echo and converts the mechanical
vibrations back into electrical signals.By measuring the time interval between emitting
and receiving the signal (the transit time), and knowing the speed of sound in the
medium (approximately 340 m/s in air), the distance to the obstacle is calculated using
the formula:

Distance = (Speed of Sound x Time) + 2

This principle is similar to echolocation. The sensor enables non-contact distance
measurement and is widely used in obstacle avoidance, liquid level detection, industrial
flaw detection, and more. Thanks to the ultrasonic waves’ strong directionality and good
penetration, it achieves accurate distance measurements.a higher energy level to a
lower one, releasing excess energy as photons, which is perceived as light emission.
The color (wavelength) of the emitted light is determined by the semiconductor material’s
bandgap. This is a direct application of electroluminescence.

Working Principle of Relays

Arelay is an electrically controlled switch that uses electromagnetic induction or other
physical effects to control circuit connections. Its core components include a coil, iron
core, armature, and contacts (normally open/closed). When current flows through the coil,
it generates a magnetic field that magnetizes the iron core, attracting the armature and
moving the contacts. This action closes normally open contacts and opens normally
closed contacts. When the coil is de-energized, the magnetic field dissipates, and the
armature returns to its original position via a reset spring, restoring the contacts to their
initial state. Solid-State Relays (SSR) use semiconductor devices (e.g., thyristors) instead
of mechanical contacts. They achieve electrical isolation between input and output
circuits through optoelectronic or magnetic coupling. Relays excel at using low-voltage,
low-current control signals (e.g., microcontroller pins) to drive high-voltage, high-current
loads. They are widely used in automation control, power systems, and household
appliances for circuit protection, logical control, and signal amplification.

Operation Effect Diagram

When the distance is less than 30 centimeters, both the relay and the LED light will be
activated simultaneously.

If the distance reaches or exceeds 30 centimeters, the relay and the LED light will be
turned off.

Key Explanations

1. Pin Definitions

The relayPin and LedPin are defined to
int relayPin = 4; connect the relay and LED to digital pins 4
int LedPin = 10; and 10, respectively.

2. Ultrasonic Section Section

#include <HCSR04.h>
const byte triggerPin = 6;

const byte echoPin = 5;
UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin);

The HCSRO4 library is included to operate the ultrasonic sensor.

The trigger pin (triggerPin) and echo pin (echoPin) are defined, and an UltraSonicDis-
tanceSensor object is initialized using these pins.

N, o oo
3. Initial LCD Display

LCD_print("Distance 30", "");

The LCD_print function is called to set the first line to display “Distance 30” and clear the second line.

Here, “30” is a threshold value indicating that when the measured distance is greater than or equal to
30 cm, the relay and LED will be turned off; when the distance is less than 30 cm, the relay and LED
will be turned on.

4. Distance Judgment and Control

if ((int)distance >= 30)

{
Icd.setCursor(9, 0);
lcd.print(">=");
digitalWrite(relayPin, LOW);
digitalWrite(LedPin, LOW);

}

else

{
Icd.setCursor(9, 0);
lcd.print("< ");
digitalWrite(relayPin, HIGH);
digitalWrite(LedPin, HIGH);

}

» Convert the measured distance value to an integer and compare it with the threshold of 30.
distance >=30: ((distance is greater than or equal to 30 cm) :
* Icd.setCursor(9, 0): Display "2" at column 9 of the first row on the LCD.
« digitalWrite(relayPin, LOW);
digitalWrite(LedPin, LOW);
Set the relay pin relayPin and LED pin LedPin to low level (turn off).
» else: ((if distance is less than 30 cm):
* Icd.setCursor(9, 0): Display "<" at column 9 of the first row on the LCD.
« digitalWrite(relayPin, HIGH);
digitalWrite(LedPin, HIGH);

Set the relay pin relayPin and LED pin LedPin to high level (turn on).

N, o oo
Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200one%20Arduino

After studying the code above, you have further enhanced your ability to control multiple
hardware components. You now have a solid understanding of trigger mechanisms and
hardware control.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

The code upload procedure for this lesson is the same as that in Lesson 7. Please refer
to the upload steps outlined in Lesson 7!

After the upload is successful, you will be able to see the ultrasonic sensor on the
All_in_one Starter Kit for Arduino continuously measuring distance data in real time.
When the measured distance reaches a certain trigger condition, it will activate other
hardware devices.

Implementation: You will observe that as the measured distance changes, when it is
less than 30 cm, both the relay and LED will be activated, indicating an obstacle has
been detected. When the distance reaches or exceeds 30 cm, the relay and LED will
turn off, indicating the surrounding environment is safe and free of obstacles.If this
behavior does not occur, please verify that the program is running correctly.

Lesson 9 - Plant Watering Reminder System

Introduction

In this lesson, we will learn how to use a soil moisture sensor to monitor changes in soil
moisture levels. When the moisture drops to 10% or below, a buzzer will sound an alert
to remind you to water the plants. When the moisture level is between 10% and 20%, an
LED will blink to indicate mild water deficiency, prompting you to water the plants soon.
When the moisture content exceeds 20%, it means the plants are in good condition and
do not require additional watering.

Hardware Used in This Lesson:

Buzzer LCD module

Soil Moisture Sensor

Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even

in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working Principle of Soil Moisture Sensors

Soil moisture sensors detect changes in the physical or electrical properties of the soil to
reflect its water content. The core principle is based on how moisture affects the soil’'s
conductivity and dielectric constant. For example, resistive sensors measure moisture by
detecting changes in resistance between metal electrodes, while capacitive sensors
measure changes in capacitance caused by variations in the dielectric constant. More
advanced methods such as TDR (Time Domain Reflectometry) and FDR (Frequency
Domain Reflectometry) calculate moisture levels based on the propagation characteris-
tics of electromagnetic signals in the soil. These physical changes are ultimately
converted into electrical signals, providing quantifiable moisture data for applications
such as agricultural irrigation and environmental monitoring.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from
a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

Working Principle of a Buzzer

A buzzer is an electronic component that converts electrical signals into sound signals,
operating based on either electromagnetic induction or the piezoelectric effect. An
electromagnetic buzzer contains a coil, a magnet, and a vibrating diaphragm. When
current flows through the coil, it generates a magnetic field that interacts with the
permanent magnet, causing the diaphragm to vibrate and produce sound. The presence
and pitch of the sound can be controlled by modulating the current's frequency and
duration. In contrast, a piezoelectric buzzer uses piezoelectric materials (such as
piezoceramics) that deform mechanically when an alternating voltage is applied—a
phenomenon known as the inverse piezoelectric effect. This deformation drives the
diaphragm to vibrate and emit sound at a specific frequency. Both types of buzzers
require external circuitry for proper operation and are commonly used in alarms,
electronic alerts, and notification systems.

Operation Effect Diagram

When the soil moisture drops below 10%, the buzzer will sound an alarm to remind you
to water the plant.

— | ®: 00 i—
H-:a um‘i.nanap.ﬂ :‘b. '".

O.D'“'ﬁ]jaai e /.. | [
= &M

@

When the moisture is between 10% and 20%, the LED will blink, indicating mild water
deficiency and prompting timely watering.

-Ej:E umli':ahs;‘.j

lﬁgosf = e

When the moisture level exceeds 20%, it indicates that the plant is in good condition,
and the red LED remains steadily on.

» e K‘I‘i'm SHE

O.D""ﬁ]joﬂi

Red LED

Once the program runs successfully, you will observe that the LED and buzzer respond
to changes in soil moisture levels:

» When the buzzer sounds, it indicates that the plant is severely lacking water and
requires immediate watering.

» When the LED blinks, it means the plant is moderately lacking water and needs to be
watered soon.

» When the LED remains steadily on, it shows that the plant has sufficient moisture and
is growing well.

Key Explanations

1. Moisture Sensor

int sensorPin1 = A3; » Defined the input pin sensorPin1 for the
int Pin1Value = 0; soil moisture sensor, which is connected to

int mappedValue; analog input pin A3.

 Defined the variable Pin1Value to store the raw value read from the sensor.

* Defined the variable mappedValue to store the mapped percentage value representing
the soil moisture level.

2. LCD Display

void LCD_ print(String txt1, String txt2)
{
Icd.setCursor(0, 0);
lcd.print(" ");
Icd.setCursor(0, 1);

lcd.print(" ");
Icd.setCursor(0, 0);
Icd.print(txt1);
Icd.setCursor(0, 1);
Icd.print(txt2);

« A custom function LCD_print is used to print two lines of text on the LCD screen.

« |t first clears the old content from the screen, then prints the new text lines.

3. Initialization Section

void setup() {

Serial.begin(115200);

while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);

}

Serial.printin("Backpack init'd.");

pinMode(sensorPin1, INPUT);

pinMode(buzzerPin, OUTPUT);

LCD_print("Soil moisture”, ");

* Initializes serial communication with a baud rate of 115200.

« Initializes the LCD screen; if initialization fails, it prints an error message and delays
repeatedly until successful.

« Sets the soil moisture sensor pin as input and the buzzer pin as output.

» Calls LCD_print to display "Soil moisture" on the first line of the LCD, and clears the
second line.

4. Main Loop Section

void loop() {
Pin1Value = analogRead(sensorPin1);
Serial.print("sensor1 =");
Serial.printin(Pin1Value);
mappedValue = map(Pin1Value, 0, 1023, 0, 100);
String Value = String(mappedValue) + "%";
Icd.setCursor(0, 1);
led.print(" ");
Icd.setCursor(0, 1);
Icd.print(Value);
delay(500);
if (mappedValue < 10)
{
digitalWrite(LedPin, LOW);
tone(buzzerPin, 1300);

delay(250);
noTone(buzzerPin);
} else if (mappedValue >= 10 && mappedValue < 20)
{
digitalWrite(LedPin, HIGH);
delay(100);
digitalWrite(LedPin, LOW);
} else if (mappedValue >= 20)
{
digitalWrite(LedPin, HIGH);
}
}

> Reading Soil Moisture Sensor Value:

Pin1Value = analogRead(sensorPin1);

The analogRead function is used to read the analog value from the soil moisture sensor and store it
in the variable Pin1Value. The raw value is printed to the serial monitor for debugging purposes.

» Mapping the Moisture Value:
mappedValue = map(Pin1Value, 0, 1023, 0, 100);

The map function is used to convert the raw analog reading (ranging from 0 to 1023) into a
percentage value between 0 and 100, representing the soil moisture level.

> Updating the LCD Display:

String Value = String(mappedValue) + "%"; The mapped soil moisture value is

converted into a string and appended

Icd.setC 0, 1);
e with a percentage sign ("%").

led.print(" ");
Icd.setCursor(0, 1);
Icd.print(Value);

The second row of the LCD is cleared,
and the new moisture value is displayed.

> Controlling the Buzzer and LED Based on Moisture Level:

if (mappedValue < 10)
{
tone(buzzerPin, 1300);
delay(250);
noTone(buzzerPin);
} else if (mappedValue >= 10 && mappedValue < 20)

{

digitalWrite(LedPin, HIGH);

delay(100);

digitalWrite(LedPin, LOW);
} else if (mappedValue >= 20)
{

digitalWrite(LedPin, HIGH);
}

mappedValue < 10: If the moisture level is below 10%, the buzzer is triggered and sounds for 250
milliseconds as a critical low moisture warning.

mappedValue >= 10 && mappedValue < 20: If the moisture level is between 10% and 20%, the LED
blinks once (set HIGH for 100 milliseconds, then set LOW).

mappedValue >= 20: If the moisture level is 20% or above, the LED remains steadily ON, indicating
healthy soil conditions.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After going through the code, you'll have a much better handle on how different sensors
and hardware work together, and how to use logic to control more devices.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

This lesson also requires importing the Adafruit_LiquidCrystal library. The download and
installation process is the same as in Lesson 4, so please refer to that for guidance!

After the upload is successful, you will be able to see the data collected by the soil
moisture sensor displayed on the LCD screen of the All_in_one Starter Kit for Arduino,
allowing real-time monitoring of the current soil moisture levels. When the moisture
reaches the preset threshold, the system will trigger an alert to notify the user to take
appropriate action promptly.

Lesson 10 - Brightness Display

Introduction

In this lesson, we will use a sliding sensor (potentiometer) to adjust the brightness of an
LED, allowing you to experience interactive manual control of light intensity. By simply
moving the slider, you can change the LED’s brightness in real time—from soft, dim light
to bright, intense illumination—providing an intuitive understanding of how analog signals
and PWM (Pulse Width Modulation) technology work together to control brightness.

Hardware Used in This Lesson:

LCD module

>

> . linear
Potentio

meter

RED LED

e,
Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even
in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working principle of a sliding potentiometer

A sliding potentiometer adjusts its resistance by changing the effective contact length on
the resistive element. As the sliding contact (wiper) moves along the resistive track, the
length of the resistive material in the current path varies, causing the total resistance to
change. Linear potentiometers have resistance proportional to the wiper position, while
logarithmic types follow a nonlinear curve. The design must ensure reliable contact to
avoid noise or erratic behavior.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from
a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

Operation Effect Diagram

When the sliding module is all the way to the right, the brightness is at its maximum.

Linear Potentiometer

Red LED

n*u&'nﬁgsg‘.g
5 -ﬂ . 't g
' QDQ“D(@“

Linear Potentiometer

Red LED

Once the program runs successfully, you'll be able to use the sliding sensor
(potentiometer) to control the LED brightness, and the LCD will display a brightness
level from 0 to 10, allowing for intuitive brightness adjustment.

Key Explanations

1. Variable Definition

LinearPin: Connected to analog input pin A0,
int LinearPin = AO; used to read the value from the linear sensor.

int LedPin = 10; LedPin: Connected to digital pin 10, used to

control the brightness of the LED.

2. Initialization Function

void setup() {

Serial.begin(115200);

while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);

}

Serial.printin("Backpack init'd.");

pinMode(LedPin, OUTPUT);

pinMode(LinearPin, INPUT);

Icd.setCursor(0, 0);

lcd.print("Brightness check");

Initializes serial communication for debugging and monitoring purposes.

Initializes the LCD screen; if initialization fails, it continuously prints error messages in a
loop until successful.

Sets the LED pin and the linear sensor pin to the appropriate pin modes.

Displays “Brightness check” on the first line of the LCD, indicating this is a brightness
detection program.

3. Initialization Function

void loop() {
int adcValue;
int mappedValue;

adcValue = analogRead(LinearPin);

mappedValue = map(adcValue, 0, 1023, 0, 255);
analogWrite(LedPin, mappedValue);
mappedValue = map(adcValue, 0, 1023, 0, 10);
String Value = String(mappedValue);

delay(100);
Icd.setCursor(0, 1);
lcd.print(" ");
Icd.setCursor(0, 1);
Icd.print(Value);

» Sensor Value Reading:

The analogRead function is used to read the analog value from the linear sensor and store it in
adcValue.

v

Value Mapping:

The map function is used to map adcValue from a range of 0-1023 to 0-255, which is used to
control the PWM duty cycle of the LED.

The value is mapped again from 0—1023 to 0—10 for display purposes on the LCD.

v

LED Brightness Control:

The analogWrite function writes the mapped PWM value to the LED pin, adjusting the LED
brightness accordingly.

v

LCD Display Update:
The mapped brightness level is converted to a string and displayed on the second line of the LCD.

lcd.print(" ") is used to clear any previous content on the second line, ensuring the display remains
clean and accurate.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, you should now have a stronger grasp of how multiple
sensors and hardware components can work together. By applying logical control, you
can coordinate and manage various devices, enabling functions like the brightness level
control and display demonstrated in this lesson.

L —
Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

This lesson also requires importing the Adafruit_LiquidCrystal library. The download and
installation process is the same as in Lesson 4—please refer to Lesson 4 for detailed
steps!

Once the upload is successful, you will see the current LED brightness level displayed
on the LCD screen of the All_in_one Starter Kit for Arduino. You can then control the
LED brightness in real time by adjusting the sliding potentiometer, allowing for an
intuitive and interactive lighting experience.

Lesson 11 - Temperature&Humidity
Detecting System

Introduction

In this lesson, we will introduce how to use a temperature and humidity sensor module to
obtain temperature and humidity data and display it on a screen. With this module, we
can collect real-time local temperature and humidity readings, which will be beneficial for

our future experiments and research.

Hardware Used in This Lesson:
LCD module

temperature and humidity
sensor module

e,
Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even
in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working Principle of Temperature and Humidity Sensors

A temperature and humidity sensor is an electronic device used to measure ambient
temperature and humidity levels. Its working principle relies on the response characteris-
tics of sensitive elements to environmental physical quantities:For temperature measure-
ment, components such as thermistors, thermocouples, or semiconductor-based
temperature sensors are commonly used as sensing elements. A thermistor, for
instance, exhibits a predictable change in resistance as temperature varies — for
example, a negative temperature coefficient (NTC) thermistor decreases in resistance as
temperature increases. This change in resistance is typically converted into a voltage
signal using a Wheatstone bridge or similar circuit, then processed through
analog-to-digital conversion (ADC) and calibration algorithms to produce an accurate
temperature reading.

Operation Effect Diagram

The temperature and humidity sensor is continuously acquiring real-time environmental
data.

..,.._mwﬂ% "‘ﬁ* |
- :
' GEEC:E = C

% e e e | o0 [T

for Aruing

Once the program runs successfully, you will observe that the temperature and humidity
values from the sensor are periodically updated and displayed on the LCD screen.

Key Explanations

1. DHT20 Temperature and Humidity Sensor

#include "DHT20.h"
DHT20 DHT(&Wire);

* The DHT20 library is included to operate the DHT20 temperature and humidity sensor.
» ADHT20 object is initialized, configured to use the 12C interface.

uint8_t count_DHT20 = 0;

A variable named count_DHT20 is defined to keep track of the number of readings, with
debugging information printed every 10 reads.

2. LCD Display

#include "Adafruit_LiquidCrystal.h"

Adafruit_LiquidCrystal Icd(1);

» The Adafruit LCD library is included, and an LCD object is initialized using the 12C
interface.

» The Adafruit_LiquidCrystal library supports multiple LCD interfaces (parallel, 12C, SPI).

» The parameter 1 in Icd(1) specifies the 12C bus number or channel.

void LCD_print(String txt1, String txt2)
{
Icd.setCursor(0, 0);
Icd.print(" ");
Icd.setCursor(0, 1);
Icd.print(" ");

Icd.setCursor(0, 0);

Icd.print(txt1); « A custom function LCD_print is
Icd.setCursor(0, 1); defined to print two lines of text on
lcd.print(txt2); the LCD screen. It first clears the
previous content on the screen and
then prints the new text.

3. Initialization Functions

void setup() {
Serial.begin(115200);
while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);
}
Serial.printin("Backpack init'd.");
Wire.begin();
DHT.begin();
}

« Serial.begin(115200): Initializes serial communication for debugging and monitoring.

* Icd.begin(16, 2): Initializes the LCD screen with 16 columns and 2 rows; if initialization
fails, it continuously prints error messages until successful.

» Wire.begin(): Initializes the 12C interface.

* DHT.begin(): Initializes the DHT20 temperature and humidity sensor.

4. Main Loop Function

LCD_print("Temp:", "Humi:");
» Call the LCD_print function to display labels on
the LCD—"Temp:” on the first line and “Humi:” on
the second line. This sets up temperature and
humidity labels on the screen.

LCD_print("Temp:", "Humi:");

Time Interval Control
if (millis() - DHT.lastRead() >= 1000)

* Use the millis() function to get the current time and compare it with the last data read
time from the DHT20 sensor (DHT.lastRead()). This ensures data is read and updated at
appropriate intervals.

« If the time difference is greater than or equal to 1000 milliseconds (1 second), the
reading operation is executed. This ensures that temperature and humidity data are read
once every second.

Read temperature and humidity data

int status = DHT.read();

« Call the DHT.read() method to read temperature and humidity data. This method
updates the internal state of the DHT20 sensor, including temperature and humidity
values.

Read temperature and humidity data

if ((count_DHT20 % 10) == 0) {
count_DHT20 = 0;
Serial.printin();

Serial.printin("Type\tHumidity (%)\tTemp (°C)");

}
count_DHT20++;

* Use the variable count_DHT20 to keep track of the number of readings taken.
« Every 10 readings, print a debug information header to the serial monitor.

« After each reading, increment the count_DHT20 variable by one.

Construct display strings

String TemValue = "Temp:" + String(DHT.getTemperature()) + " C";

String HumValue = "Humi:" + String(DHT.getHumidity()) + " %";

* Construct display strings for temperature and humidity to be shown on the LCD.

Update LCD display
* Use lcd.setCursor to set the

lcd.setCursor(5, 0); cursor position, displaying
humidity on the first line and
temperature on the second line.

Icd.print(String(DHT.getTemperature()) + "

C");lcd.setCursor(5, 1);

Icd.print(String(DHT.getHumidity()) + " %"); + Call Icd.print to output the
humidity and temperature values

onto the LCD screen.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the above code, you can further customize the functionality—for example,
use the data collected from the temperature and humidity sensor to set threshold values
that control other hardware devices.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since the DHT20 temperature and humidity sensor used in this lesson requires
additional library support, you need to install the appropriate driver libraries before
uploading the code to ensure it runs correctly.

Follow the steps shown in the figure to download the DHT20 library (version 0.3.1),
which is necessary to drive the temperature and humidity sensor properly.

Fle Edt Skeich Tooks Help

¥ Arduinauno -

UBRARY UxKAGER i cature_ _detactin o
2
Ty A
Topic. A

DHT20 by Rob THaar
ia

] <aobm
@

(120 temparature and

More info

Qo - [
3

61 String Temvalue = “Temp:” + String(DHT.getiesperature()) + ° C°;
- String(OHT getsumidity()) + = %5

ot DHT20 by fangll DFRobot o4
i fongEadivoba co Pt

@ delay(18);
b

100 ~ (LS]

This lesson also requires importing the Adafruit_LiquidCrystal library (version 2.0.4). The
download and installation process is the same as in Lesson 4—please refer to Lesson 4
for details!

After installation, you can find the downloaded library files in this path.

[} >I Documents > Arduine > libraries > I

3 @ B W T Sort v = View ~
Nome _ Date modified Type Size
7 Adafruit_BuslO 6/19/2025 12:03 PM File folder
7 Adafruit LiquidCrystal 6/19/2025 2:31 PM File folder
7 Adafruit_MCP23017_Arduine_Library 6/19/2025 12:03 PM File folder
3 BHI750 6/19/2025 4:25 PM File folder
3 HCSRo4 6/19/2025 5:04 PM File folder

6/20/2025 11:27 AM File folder

(The download path is determined by the path set in the Arduino IDE.)

[for st ok v
1 New Sketch CoN hng ¥

Noew Chned Skelch Alt=Ct=N
L_4_LCD_dsplayino

Open.. o0
1 winclude “Adafruit_Liquiderystel.h”
Cpen Pecent , E
Skrtehbook: vl 3 Adefrult_UquidCrystal led(1);
l 4
Examples ,
= e 5 void setup() {
| e & | 4/ put your setup code here, to run once:
Save cutss 7 n(115200);
Iphanumerical iquid 8 d.begin(26, 2)) {

Sevehe. 5 CHRSHSS Bruryalowsan

9 Serial.println("Cauld not init backpack. Check wiring.");
CotiComma [0 UARAICTAL 10 delay(50);
no
idnced “E 2 Serdal t1n("Backpack init'd.”);
i o 13 cor(a, @);
—_— 14 HELLO WORLD™):
15| delay(1008);
Adafruit LiquidCrystal by Adsfrult 16 1cd.setcursor(e, 1):
—— 17| lcdprint(aye Bye);

Preferences x

Seffings | Network

Sketchbook location: |

€\Users|14175\Documents\Arduino
(O Show files inside Sketches.

Editor font size: 14

Interface scale: B Automatic 100 %

Theme Light ~

Language: English ~ | (Reload required)

Show verbose output during & compile BB upload

Compiler warnings None v

(O Verify code after upload

Auto save

) Editor Quick Suggestions

Additional boards manager URLs: i i jing-pi a

Now that the library is downloaded, you can upload the code.

After the upload is successful, you will be able to see the temperature and humidity data
from the sensor displayed on the LCD screen of the All_in_one Starter Kit for Arduino.

Lesson 12 - Servo Control

Introduction

In this lesson, we will systematically study the basic operating principles and control
methods of servo motors. Through programming, you will achieve precise angle control
of the servo motor, allowing it to rotate smoothly from 0 degrees to 180 degrees, then
reverse back to 0 degrees. This will demonstrate the full range of reciprocating motion,
providing a clear understanding of how servo motors are typically used in position
control applications.

Hardware Used in This Lesson:

Working Principle of the LCD Screen

A servo motor is an angular position control actuator that integrates the principles of a
servo system, operating based on a closed-loop feedback control mechanism. When a
control signal—usually a Pulse Width Modulation (PWM) signal—is input, the pulse
width corresponds to a target angle (for example, 1 ms pulse width corresponds to 0°,
1.5 ms to 90°, and 2 ms to 180°). The control circuit compares the input signal with the
real-time angle feedback from a potentiometer. If there is a deviation, it drives the motor
to rotate. The motor, through a gear reduction mechanism, turns the output shaft, while
the potentiometer rotates synchronously with the output shaft, changing its resistance to
reflect the current angle and feeding this back to the control circuit. This closed-loop
system continuously adjusts the motor’s direction and speed until the actual output shaft
angle matches the target angle, stopping movement to achieve precise angular control
within £0.5°.

Operation Effect Diagram

Servo rotates to 0°:

Key Explanations

1. Servo Initialization and Parameter Configuration

* Servo class: Built-in Arduino library used for

Servo myservo; .
controlling servo motors.

myservo.attach(9, 600, 2520);

« attach(pin, min, max):

« pin: The Arduino pin connected to the servo control signal (pin 9 in this example).
min/max: The pulse width in microseconds corresponding to the servo angles.
« Default range: 544ps (0°) to 2400ps (180°).

*Adjusted range: 600us (0°) to 2520us (180°), tailored for specific servo mechanical
limits.

L —
2. Core Logic for Angle Control

for (pos = 0; pos <= 180; pos += 1) {
myservo.write(pos);

delay(15);

» write(angle): Sends an angle command to the servo.

Angle mapping:

« write(0) — Outputs a 600us pulse (corresponding to 0°).

* write(90) — Outputs a 1560us pulse (midpoint).

« write(180) — Outputs a 2520us pulse (corresponding to 180°).
> delay(15):

* The servo needs time to physically move; the delay ensures enough time before the
next command.

* Too short a delay may cause the servo to jitter or fail to reach the target position.

3. Implementation of Reciprocal Motion

for (pos = 0; pos <= 180; pos += 1) { ... }
delay(2000);

for (pos = 180; pos >= 0; pos -=1){ ... }
delay(2000);

» Loop structure: Uses two for-loops to achieve back-and-forth movement.

Delay function: Adds a pause at the endpoint positions to make the servo’s status
easier to observe.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the above code, you can further enhance the functionality—for example,
by displaying the servo’s current rotation angle on the screen in real time.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since this lesson involves using a servo motor that requires additional library support,
before uploading the code, we need to install the appropriate library to ensure the code

runs correctly.

Follow the steps shown in the diagram to download the Servo library (version 1.2.2) so
that the servo motor can function properly.

Fie Ein_Sumch Toch _Hein

s] 5
e
e —

@1 Sarvo by Micnas Margoss, Arino
) s adima boards o controlavaresy of
T boary can

makes careful use of ..

Edulntro by Arduina LLC
Ubeary used o supite 2 inreduion

ded to be used with Arduing.
NG/ MICRO / MEGA./ NANG cl922¢./ NANG..

[ERCR inisvaL

servo myserve; /

int pos = 8;

vold setup() {
sysero.aTtach(9, 608, 2526); // attaches the servo on pin 9 ta The Seo ebject

wold loop() {

for (pos = 85 pos <= 1885 pos 4= 1) { /
in steps of 1 degree
ayservo.mrite(pos)
delay(18);

delay(2088);

For (03 = 108; o3 e B pos == 1) { 1/
myserveumite(pos) 1"

elay(15);

delay(2000);
)

After installation, you can find the downloaded library files in this path.

(m} >| Documents > Arduino > libraries >

o @b G Ty T Sort v = View -
Name - Date madified Type Size
[* Adsfruit_Busio 6/19/2025 12:03 PM File folder
7 Adafruit LiquidCrystal 6/19/2025 2:31 PM File folder
7 Adafruit_MCP23017_Arduino_Library 6/19/2025 12:03 PM File folder
T2 BHI750 6/19/2025 4:25 PM File folder
6/19/2025 5:04 PM File folder
6/20/2025 11:27 AM Fille folder
6/20/2025 12:00 PM File folder

(The download path is determined by the path set in the Arduino IDE.)

Edit Sketch Tooks Help

] New Sketch N o
New Cloud Sketch ~ Alt+Ctri+N
L layino
Open. e
1 #include "Adafruit_LiquidCrystal.
Open Recent > 5
Sketchbook » 3 Adafruit_Liquidcrystal lcd(1);
Examples r 4
5 void setup() {
Close Curlew [ey 6 // put your setup code here, to run once:
Save Ctres 7 serial.begin(115200) ;
Iphanumerical liquid 8 while (!lcd.begin(16, 2)) {
Savehs. 9 Culeshift=S ”;’\ﬁ"“"";é‘" . ° Serial.printin("Could not init backpack. Check wiring.”™);
CtrlvComma 10! HauidCrystal.. 10 delay(50);
Advanced > b
anes) 12 serial.println(“Backpack init'd.”);
Quit culeQ 13 lcd.setCursor(e, @);
— 14 1cd.print("HELLO WORLD");
15 delay(1000);
Adafruit LiquidCrystal by Adafruit 16 lcd.setCursor(e, 1);
2.0 4installed 17 lcd.print("Bye Bye");
12 delay(1000);
Fark of LiquidCrystal HD44780-compatible LCD o Ted ear()s
driver library, now with support for ATtiny8S. Fork concreart):
of LiquidCrystal HD44780-compatible LCD drive... 20 lcd.setBacklight(@);
Moreinfo 21}
2
204 v REMOVE 2 void 1oop() {
2 /1 put your main code here, to run repeatedly:
25
2}
AsyncLiquidCrystal by Paulo Costa .

Preferences X
Seftings | Network

Sketchbook location:

c\Users\14175\Documents\Arduino BROWSE

(O Show files inside Sketches.

Editor font size: 14

Interface scale G Automatic 100 %

Theme: Light -

Language English ~ | (Reload required)

Show verbose output during compile & upload

Compiler wamings None v

() Verify code after upload

4 Auto save

() Editor Quick Suggestions

Additional boards manager URLs: https://github. i ino-pi E

Now that the library is downloaded, you can upload the code.

The upload steps are the same as in Lesson 1—please refer to it for guidance.

Once the upload is successful, you will see the servo motor on the All_in_one Starter Kit
for Arduino in action—rotating smoothly from 0° to 180°, and then reversing direction
from 180° back to 0°.

Lesson 13 - IR Control LED

Introduction

In this lesson, we will delve into some advanced applications of infrared (IR) remote
control technology. By identifying distinct button signals, we can use an IR remote to
control the state of an LED. When Button 1 is pressed, the LED remains steadily on;
pressing Button 2 causes the LED to blink; and pressing Button 3 turns the LED off.

Hardware Used in This Lesson:

i = 000

et =) [T, X+ N e

‘. > m:nnliﬁilsgéeuﬁ% :._g 0 @ @
o SESEOE 000
000

IR Remote Control

Working Principle of Infrared Remote Control and Receiver

The working principle of an infrared (IR) remote control and receiver is based on the
transmission of encoded infrared signals and their subsequent decoding and execution.
When a button is pressed on the remote control, the internal encoding circuit converts
the button input into a specific binary code format (such as NEC or RC-5 protocol). This
code is then modulated—typically using a 38kHz carrier frequency to reduce interfer-
ence—and transmitted as infrared light pulses (around 940nm wavelength) via an IR
LED.On the receiving side, an IR receiver module (e.g., HS0038) detects the incoming
IR signal using a photodiode. The received signal is then amplified, filtered, and
demodulated to recover the original binary code. This decoded signal is interpreted by a
microcontroller or main processing unit, which then performs the corresponding
action—such as adjusting a servo angle or switching an appliance on or off. The entire
process follows a closed loop: button encoding — infrared modulation and transmis-
sion — photodetection and signal decoding — command execution, enabling
effective wireless control of electronic devices.

L —
Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from
a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

Operation Effect Diagram

When button 1 is pressed,
the LED remains steadily
ON.

0000000

When button 2 is pressed,
the LED flashes.

When button 3 is pressed,
the LED turns OFF.

* Red LED

Key Explanations

1. IR Receiver Initialization

#include <IRSendRev.h>

#include <TimerOne.h>
#define IR_PIN 2

» The IRSendRev library is included to handle infrared signal reception.
» The TimerOne library is included to implement timer functionality.

* The IR receiver pin IR_PIN is defined and connected to digital pin 2.

2. Variable Definitions

int LedPin = 10;
bool ledState = true;
bool timerRunning = false;

* LedPin: The control pin for the LED.

* ledState: Tracks the current state of the LED; true indicates the LED is ON, and false
means it is OFF.

« timerRunning: A boolean used to track whether the timer is currently running.

3. Initialization Function

void setup() {
Serial.begin(115200);
while (!Serial);
IR.Init(IR_PIN);
Serial.printIn("init over");
pinMode(LedPin, OUTPUT);

Timer1.initialize(1000000);
Timer1.attachInterrupt(toggleLED);
Timer1.stop();

timerRunning = false;

¢ Initialize Serial Communication:

Serial.begin(115200);

while (!Serial);

Serial.begin(115200); initializes the serial communication with a baud rate of 115200.
The baud rate determines the data transmission speed over the serial port, here set to
115,200 bits per second.

while (!Serial); is a loop that waits for the serial connection to be established. This is
necessary for some boards (like Arduino Leonardo) where the serial port takes some
time to initialize. The loop blocks further execution until the serial connection is ready.

* Initializing the Infrared Receiver Module

IR.Init(IR_PIN);

Serial.printIn("init over");

IR.Init(IR_PIN);: calls the Init function from the IRSendRev library to initialize the
infrared receiver module. IR_PIN specifies the digital pin connected to the infrared
receiver, which is pin 2 in this case.

Serial.printIn("init over");: prints the message "init over" to the serial monitor, helping
with debugging and confirming that the initialization was successful.

¢ Timer initialization

Timer1.initialize(1000000);
Timer1.attachlnterrupt(toggleLED);

Timer1.stop();
timerRunning = false;

Timer1.initialize(1000000);: initializes the timer with a period of 1 second (1,000,000
microseconds). The TimerOne library allows you to set the timer interval in microsec-
onds.

Timer1.attachinterrupt(toggleLED);: attaches the timer interrupt to the toggleLED
function, meaning that every time the timer reaches the set period, the toggleLED
function is automatically called.

Timer1.stop();: Stops the timer. At initialization, the timer does not start immediately but
waits for further instructions from the program.

timerRunning = false;: Sets a global variable timerRunning to false, indicating that the
timer is currently not running.

N, o oo
4. Main Loop Function

¢ Check Infrared Data:

Use the IR.IsDta() function to check whether infrared data
if (IR.IsDta()) has been received. This function returns true if data is
received; otherwise, it returns false.

¢ Receive Infrared Data:

Use the IR.Recv(dta) function to receive the infrared
byte length = IR.Recv(dta); data, storing the received data in the array dta. The
variable length holds the length of the received data.

 Execute Actions Based on Key Codes

Use a switch statement to perform corresponding
switch (dta[8]) actions based on the 9th byte of the received data
(dta[8]), which usually represents the key code to

distinguish different button presses.

¢ Button1

case 48: If the received key code is 48 (Button 1):
Serial.printin("[1]");
digitalWrite(LedPin, HIGH);
if (timerRunning) { * Turn on the LED (set LedPin to HIGH).

* Print [1] to the serial monitor.

stopTimer(); + If the timer is running, call stopTimer() to stop the
} timer.
break;

o Button 2

case 24:
Serial.printin("[2]");
if ('timerRunning) {

startTimer(); « If the timer is not running, call startTimer()
} to start the timer.
break;

If the received key code is 24 (Button 2):

* Print [2] to the serial monitor.

e
o Button 3

case 122:
Serial.printin("[3]");
digitalWrite(LedPin, LOW); « Print [3] to the serial monitor.
AR R) o - Turn off the LED (set LedPin to LOW).

stopTimer();

}

break;

If the received key code is 122 (Button 3):

« If the timer is running, call stopTimer() to stop
the timer.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200one%20Arduino

After studying the above code, you can further customize the functionality—for example,
use the infrared remote control to operate and control other hardware devices based on
different remote signals.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since this lesson involves using an infrared module that requires additional library files to
operate properly, you need to add the appropriate libraries before uploading the code.

Note: The library for this infrared module is not available through the Arduino IDE’s
built-in library manager. You will need to download it from GitHub. However, we have
prepared the necessary library for you — just click the link below to download it.

IRSendRev library files:
https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/libraries

Next, we also need to install the required timer library. The TimerOne library provides
support for timer functions. A timer is a hardware resource that can trigger interrupts at
specified intervals, enabling timed tasks.

Follow the steps shown in the diagram to download the TimerOne library (version 1.1.1)
so that you can use the timer functionality.

File Edit Sketch Tools Help

- ¢ Arduino Uno - _

D LIBRARY MANAGER L_13_IR_control_LED.ino
//IR receive demo vi.e
=) Tye Al ~ //Connect the IR sent pit
Topic: Al - [AR R RS

#include <IRSendRev.h>
#include-<TimerOne.h>
#define IR PIN 2

IR 1
|D TimerOne by Stoyko Dimitrov, Jesse

Tane, Jérdme Despatis, Michael Polli, Da...

@ Use hardware Timer1 for finer PWM control

and/or running an periodic interrupt function int LedPin - 1e;

More info 1
Q 1 bool ledState = true; //
111 v 3 1. bool timerRunning = falst
void setup() {
1. Serial.begin(1152@8);
1! while (!Serial);
ContinuousStepper by Benoit Blanchon 1 IR.Init(IR_PIN);
An Arduino library to spin stepper motors in 1 Serial.println("init o
continuous motions. Contrary to other stepper 1
libraries, this one doesn't provide any function t... 11 pinMode(LedPin, OUTPUT
More info 2 Timerd.initialize (108l
310 & 2 Timerl.attachInterrupt
2. Timerl.stop();
2 timerRunning = false;

o

// digitalwrite(LedPin,
}

-
VB WRREODRNOWNEWNREDWLENO W R WD

M

StivSeg by Stephen Racz

After installation, you can find the downloaded library files in this path.

Remember to move the downloaded infrared receiver library file to the specified path so
that the code can recognize the library file you added during the upload process.

o)I Documents > Arduine > libraries > I
m @& @ W T Sort + = View -
Name . Date modified Type Size
7 Adafruit_BuslO 6/19/2025 12:03 PM File folder
| Adafruit_LiquidCrystal 6/19/2025 2:31 PM File folder
T Adafruit_ MCP23017_Arduino_Library 6/19/2025 12:03 PM File folder
7 BH1730 6/19/2025 4:25 PM File folder
I 20 pHT20 6/20/2025 11:27 AM File folder
77 HCSRo4 6/19/2025 5:04 PM File folder
T Serve 6/20/2025 12:00 PM File folder
7 IRSendRev 6/20/2025 2:17 PM File folder
77 TimerOne 6/20/2025 3:06 PM File folder

(The download path is determined by the path set in the Arduino IDE.)

E'm Skeich ToaksHelp

1 NewSkecn N oo =

New Cloud Skelch Attt
L_4_LCD_dsplayino

Open.. 0
1 winclude "Adefruit_LiquidCrystel.h”
Open Racent .
Sketchbook vl 3 adafruit_LiguidCrystal led(1);
' 4
Euamples . o
il o | 5 vold setup() {
. . B 6 | /7 put your setup code here, to run once:
Save s 7 | Serial.begin(11528);
Iphanumerical iquid s | while begin(16, 2)) {
TR g oy | et 9 n{"Could not init backpack. Check wiring.");
o fectioseral. g
1
el " 12 Ant1n("Backpack init'd.");
Quit ey 13 lcdosetCursor(d, 8);
—_— 14| led.print{"HELLO WORLO™):
15 delay(1888);
Adafruit LiquidCrystal by Adafrll 15| led.setturso
— 17 ledopring(”
18 delay(1000);
Fork of LiquidCrystal HDA780-compatible LED o |'d”f q
rver Vorary, now wah support for ATtiny35. Fork Cls
of LiquidCrystal HD44780-compatible LCD drive... 20 1cd. setBacklight(8):
More-info n 3
2
204 v REMOVE 2 vold loos() ¢
24 | /I put your main code here, to run repeatedly:
5
%}
AsyncLiquidCrystal by Pao Costa i

Preferences X

Settings | Network

Sketchbook locaton:

c\Users\14175\Documents\Arduino |
) Show fles insids Sketches

Edtor font size: 1

Interface scale: GAwomaic 100 %

Theme Light v

Language Engish ~ | (Reload required)

Show verboss output during I compile B upload

Compler wamings None

(Verify code after upload

2 Auto save

CJEditor Quick Suggestions

Additional boards manager URLs: https://github. jino-pic a

The library files have now been downloaded. Next, you can upload the code we will be
using.

THe code upload steps for this lesson are the same as those in Lesson 1. Please refer
to Lesson 1 for detailed instructions!

After the upload is successful, you will be able to use the infrared remote control to
operate the LED on the All_in_one Starter Kit for Arduino to perform the corresponding
functions.

Lesson 14 - Weather Reminder

Introduction

In this lesson, we will learn about environmental monitoring and intelligent control
technology based on the DHT20 temperature and humidity sensor. By real-time acquisi-
tion of temperature and humidity data, we will achieve three interactive functions:
dynamically updating the LCD display content according to temperature and humidity
thresholds (such as showing values and status icons), automatically controlling the LED
indicator light (lighting it up as a warning under high temperature and humidity), and
triggering the buzzer alarm (sounding when preset thresholds are exceeded). The course
will thoroughly explain the complete implementation process of sensor data reading,
threshold logic judgment, and multi-device coordinated control, enabling you to master
the core technologies of data acquisition and actuator coordination in environmental
monitoring systems.

Hardware Used in This Lesson: @

LCD module

Buzzer

RED LED

E”; m‘n%*rE"EE
/ D::| i[aﬁi s

temperature and humidity
sensor module

Working Principle of the LCD Screen

The LCD1602 screen (a 16%2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.

Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even
in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working Principle of Temperature and Humidity Sensors

A temperature and humidity sensor is an electronic device used to measure ambient
temperature and humidity levels. Its working principle relies on the response characteris-
tics of sensitive elements to environmental physical quantities:For temperature measure-
ment, components such as thermistors, thermocouples, or semiconductor-based
temperature sensors are commonly used as sensing elements. A thermistor, for
instance, exhibits a predictable change in resistance as temperature varies — for
example, a negative temperature coefficient (NTC) thermistor decreases in resistance as
temperature increases. This change in resistance is typically converted into a voltage
signal using a Wheatstone bridge or similar circuit, then processed through
analog-to-digital conversion (ADC) and calibration algorithms to produce an accurate
temperature reading.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from
a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

Working Principle of a Buzzer

A buzzer is an electronic component that converts electrical signals into sound signals,
operating based on either electromagnetic induction or the piezoelectric effect. An
electromagnetic buzzer contains a coil, a magnet, and a vibrating diaphragm. When

current flows through the coil, it generates a magnetic field that interacts with the
permanent magnet, causing the diaphragm to vibrate and produce sound. The presence
and pitch of the sound can be controlled by modulating the current's frequency and
duration. In contrast, a piezoelectric buzzer uses piezoelectric materials (such as
piezoceramics) that deform mechanically when an alternating voltage is applied—a
phenomenon known as the inverse piezoelectric effect. This deformation drives the
diaphragm to vibrate and emit sound at a specific frequency. Both types of buzzers
require external circuitry for proper operation and are commonly used in alarms,
electronic alerts, and notification systems.

Operation Effect Diagram

When the temperature exceeds 25°C, the red LED will light up, and the LCD will display
a “High Temperature” warning.

o

Red LED

When the temperature exceeds 30°C, the red LED will blink, and the LCD will display a
“Hot Temperature” warning.

When the humidity drops below 40%, the buzzer will sound, and the LCD will display a
“Dry Air” warning.

Buzzer

..... By " bl 3

mmggfggé’!ﬁg

-n 3
s

Red LED

Key Explanations

1. Initialization Function (setup)

void setup() {
Serial.begin(115200);
while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);

}

Serial.printin("Backpack init'd.");
Wire.begin();

DHT.begin();

« Initialize serial communication: Set the baud rate to 115200 for debugging and
monitoring.

« Initialize the 12C interface: Wire.begin() initializes the 12C interface; the DHT20
sensor communicates with the Arduino via this interface.

* Initialize the DHT20 sensor: DHT.begin() initializes the DHT20 temperature and
humidity sensor.

2. Main Loop Function (loop)
. Read DHT20 Data:

if (millis() - DHT.lastRead() >= 1000) {
int status = DHT.read();

» Use the millis() function together with DHT.lastRead() method to ensure that data from
the DHT20 sensor is read once every 1 second.

« Call DHT.read() method to read temperature and humidity data, which also updates the
sensor’s internal status.

Control LED and LCD Display Based on Temperature

if (value2 > 25 && value2 <= 30) {
LCD_print("High Temperature”, " ");
digitalWrite(LedPin, HIGH);

} else if (value2 > 30) {
LCD_print("Hot Temperature", " ");
LED_State = ILED_State;
digitalWrite(LedPin, LED_State);

}else {

LCD_print("Tem:" + String(value2) + "C", "Hum:" + String(value1) + "%");
digitalWrite(LedPin, LOW);

}

» Control the LED status and LCD display content according to the temperature value.

Control LED and LCD Display Based on Temperature

if (value2 > 25 && value2 <= 30) {
LCD_print("High Temperature”, " ");
digitalWrite(LedPin, HIGH);

}

If the temperature is between 25°C and 30°C, display "High Temperature" on the LCD
and turn on the LED.

Control LED and LCD Display Based on Temperature

if (value2 > 30) {
LCD_print("Hot Temperature", " ");
LED_State = ILED_ State;
digitalWrite(LedPin, LED_State);
}

If the temperature exceeds 30°C, display "Hot Temperature" and make the LED blink.

else {
LCD_print("Tem:" + String(value2) + "C", "Hum:" + String(value1) + "%");
digitalWrite(LedPin, LOW);

}

If the temperature is below 25°C, display the normal temperature and humidity readings
and turn off the LED.

According to humidity control the buzzer

if (value1 < 40) {
Icd.setCursor(0, 1);
Icd.print("Dry Air");
tone(buzzerPin, 1300);

}else {
noTone(buzzerPin);

}

Code breakdown:

if (value1 < 40) {
Icd.setCursor(0, 1);
Icd.print("Dry Air");
tone(buzzerPin, 1300);
¥

If the humidity is below 40%, display "Dry Air" on
the LCD and sound the buzzer alarm.

else { If the humidity is greater than or equal to 40%,
noTone(buzzerPin); stop the buzzer.

}

N, o oo
Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the above code, you have made great progress—you now know how to
set thresholds to control more hardware devices, and your ability to handle control logic
has improved significantly!

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

This lesson still requires the use of the DHT20 library (version 0.3.1) and the
Adafruit_LiquidCrystal library (version 2.0.4). Please refer to Lesson 11 for details.

(The code upload steps for this lesson are the same as those in Lesson 11; please
follow the upload instructions provided there!)

After the upload is successful, you will be able to see the DHT20 temperature and
humidity sensor on the All_in_one Starter Kit for Arduino continuously collecting
real-time temperature and humidity data. When the preset thresholds are reached,
corresponding alert messages will be displayed on the LCD screen.

Lesson 15 - Servo Angle Control

Introduction

In this lesson, we will learn how to precisely control the rotation angle of a servo motor
using an infrared remote control and display the angle value in real-time on an LCD
screen. The course will provide an in-depth explanation of infrared signal reception and
decoding, the principles of servo motor angle control, and methods for visualizing data on
the LCD. You will master the complete technical process—from remote command
transmission to motor angle adjustment and real-time data display—enabling seamless
integration of human-machine interaction control with dynamic data visualization.

Hardware Used in This Lesson:

LCD module

IR Control

00000060

Working Principle of Infrared Remote Control and Receiver

The working principle of an infrared (IR) remote control and receiver is based on the
transmission of encoded infrared signals and their subsequent decoding and execution.
When a button is pressed on the remote control, the internal encoding circuit converts
the button input into a specific binary code format (such as NEC or RC-5 protocol). This
code is then modulated—typically using a 38kHz carrier frequency to reduce interfer-
ence—and transmitted as infrared light pulses (around 940nm wavelength) via an IR
LED. On the receiving side, an IR receiver module (e.g., HS0038) detects the incoming
IR signal using a photodiode. The received signal is then amplified, filtered, and
demodulated to recover the original binary code. This decoded signal is interpreted by a

microcontroller or main processing unit, which then performs the corresponding
action—such as adjusting a servo angle or switching an appliance on or off.The entire
process follows a closed loop: button encoding — infrared modulation and transmis-
sion — photodetection and signal decoding — command execution, enabling
effective wireless control of electronic devices.

Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it mainly
consists of the LCD panel, a controller (such as the HD44780 or a compatible chip),
driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even
in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Working principle of a servo motor

A servo motor is an angular position control actuator that integrates the principles of a
servo system, operating based on a closed-loop feedback control mechanism. When a
control signal—usually a Pulse Width Modulation (PWM) signal—is input, the pulse
width corresponds to a target angle (for example, 1 ms pulse width corresponds to 0°,
1.5 ms to 90°, and 2 ms to 180°). The control circuit compares the input signal with the
real-time angle feedback from a potentiometer. If there is a deviation, it drives the motor
to rotate. The motor, through a gear reduction mechanism, turns the output shaft, while
the potentiometer rotates synchronously with the output shaft, changing its resistance to
reflect the current angle and feeding this back to the control circuit. This closed-loop
system continuously adjusts the motor’s direction and speed until the actual output shaft
angle matches the target angle, stopping movement to achieve precise angular control
within £0.5°.

Operation Effect Diagram

When the [NEXT] button on the remote control is pressed, the servo motor is activated
and automatically rotates to 180°.

When the [PLAY/PAUSE] button is pressed, the servo motor is deactivated and stops
functioning.

b i)
“Cl"'i:f‘ ¥F B
RGN IE

0000069,

After you input the desired angle to control, pressing the [EQ] button will make the servo
motor move to the specified angle (provided the servo motor is currently activated).

o0
09
o0
00
00
00
o0

Key Explanations

1. Setup function initialization:

void setup() {
Serial.begin(115200);
while (llcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);
}

Serial.printin("Backpack init'd.");
IR.Init(IR_PIN);
Serial.printIn("init over");

num1 = "Angle:";
Icd.setCursor(0, 0);
lcd.print(num1);

« Initialize serial communication with a baud rate of 115200 for debugging and monitoring.

« Initialize the LCD screen; if initialization fails, print an error message and delay 50
milliseconds repeatedly until successful.

« Initialize the infrared receiver module by calling IR.Init(IR_PIN), where IR_PIN is defined
as digital pin 2.

« Initialize LCD display:Set the LCD to show "Angle:" on the first line, which will be used
to display the servo motor’s angle.

2. Main Loop Function (loop)
o Read Infrared Data:

if (IR.IsDta()) {

byte length = IR.Recv(dta);

Use IR.IsDta() to check if there is any infrared data received.
Use IR.Recv(dta) to receive the infrared data and store it in the array dta.

Execute Actions Based on Button Code:

. Button 2: Control the servo to turn on

case 2: Serial.printin("[NEXT]");
myservo.attach(9, 600, 2520);
myservo.write(180); Serial.printin("[NEXT]"): Print the received
Icd.setCursor(0, 0); button info to the serial monitor for debugging
lcd.print(" "); and monitoring.

led.setCursor(0, 0); myservo.attach(9, 600, 2520): Attach the
lcd.print("Servo Open"); servo to digital pin 9 and set the pulse width
break; range from 600 to 2520 microseconds, which
is the standard control range for the servo.

myservo.write(180): Set the servo angle to 180 degrees, which usually represents the
"open" state of the servo.

Icd.setCursor(0, 0): Position the LCD cursor at the start of the first line.
lcd.print(" "): Clear the old content on the first line.

Icd.print("Servo Open"): Display "Servo Open" on the first line to indicate the servo is
now active.

. Button 194: Control Servo to Turn Off

case 194: Serial.printin("[PLAY/PAUSE]");
myservo.detach();
Icd.setCursor(0, 0);

lcd.print(" ");
Icd.setCursor(0, 0);
Icd.print("Servo Close");
break;

Serial.printin("[PLAY/PAUSE]"): Prints the received button info to the serial monitor for
debugging and monitoring.

myservo.detach(): Detaches the servo from the control pin, effectively stopping signal
output. The servo will stay at its current angle without active control.

Icd.setCursor(0, 0): Positions the LCD cursor at the beginning of the first row.
led.print(" "): Clear the old content on the first line.

lcd.print("Servo Close"): Display "Servo Close" on the first line, indicating that the servo
motor has been turned off.

L —
. Button 144: Set Servo Angle

case 144: Serial.printin("[EQ]");
if (num.tolnt() >= 0 && num.tolnt() <= 180) {
Serial.printin(num);
num1 = "Angle:";
myservo.write(num.tolnt());
num ="
value = myservo.read();
num1 += String(value);
Icd.setCursor(0, 0);

« Serial.printin("[EQ]"): Print
the received button information
via the serial port for debugging
and monitoring.

« if (num.tolnt() >= 0 &&
num.tolnt() <= 180): Check if
the input numeric string is within
the range of 0 to 180 degrees.

« If input value is valid:

lcd.print(" ");
Icd.setCursor(0, 0); Serial.printin(num): Print the
lcd.print(num1); input numeric string via the
sl serial port.

} else { num1 = "Angle:": Initialize the
num1 = "Angle:"; display string.
num1 += "Error"; myservo.write(num.tolnt()): Set
num =" the servo angle to the input
Icd.setCursor(0, 0); value.
Icd.print(" "); num ="": Clear the input
Icd.setCursor(0, 0); numeric string.

Icd.print(num1);

value = myservo.read(): Read
break; the current servo angle.

num1 += String(value): Append

the current servo angle to the display string.
Icd.setCursor(0, 0): Position the LCD cursor at the start of the first row.

lcd.print(" "): Clear the old content on the first row.

Icd.print(num1): Display the current servo angle on the first row.

XIf input value is invalid:

num1 = "Angle:": Initialize the display string.

num1 += "Error": Append an error message.

num = "": Clear the input numeric string.

Icd.setCursor(0, 0): Position the LCD cursor at the start of the first row.

Icd.print(" "): Clear the old content on the first row.

Icd.print(num1): Display the error message on the first row.

N, o oo
Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the above code, it is believed that you have gained a deeper understand-
ing of infrared control and a more intuitive cognition of its working principle.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since the LCD screen used in this lesson requires additional library files for driving, we
need to add appropriate library files to ensure the code runs normally before uploading
it.

Please refer to the library installation method in Lesson 4 to prepare the Adafruit_Liqg-
uidCrystal library (version 2.0.4).

Since the infrared module used in this lesson requires additional library files to function,
you must add the appropriate libraries before uploading the code.

Note: The library for this infrared module cannot be found via the Arduino IDE's Library
Manager. You need to download it from GitHub, but we have prepared it for you. Click
the link below to download:

IRSendRev Library:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/libraries

Now that the library files have been downloaded, you can proceed to upload the code
used in this lesson.

Remember to move the downloaded infrared receiver library file to the specified path so
that the code can recognize the library file you added during the upload process.

The code upload steps for this lesson are consistent with the process in the first lesson.
Please refer to the first lesson for guidance!

After the upload is successful, you can use the infrared remote control to make the LCD
on the All_in_one Starter Kit for Arduino display the key values you input, and you can
also intuitively see the servo running at the specified angle.

Lesson 16 - Polite Automatic Door

Introduction

In this lesson, we will delve into interactive control techniques for servo motors, focusing
on dynamic angle adjustment through button input. The course will cover key concepts
such as button state detection, precise servo angle control, and action logic design. You
will implement a complete interactive process: “press the button — servo motor rotates
to open the door; release the button — motor resets to close the door.” Through
hands-on practice, you will gain a solid understanding of the coordination between
mechanical motion and electronic control, as well as the application of momentary
triggers and sustained state control in servo systems. This foundation is essential for
developing motor control in smart home systems, automation equipment, and similar
applications.

Hardware Used in This Lesson:

LCD module

Working Principle of Button Control

A button generates signals through mechanical contacts or capacitive sensing. Mechani-
cal buttons rely on a metal dome or spring mechanism to create HIGH or LOW logic
levels when pressed or released, often requiring a debounce circuit to eliminate signal
fluctuations. Capacitive buttons detect changes in capacitance between electrodes. The
microcontroller (MCU) scans matrix buttons by reading the voltage levels of rows and
columns, or by reading ADC values, to determine which button is pressed. The system
distinguishes between short and long presses through software-based timing.

Working principle of a servo motor

A servo motor is an angular position control actuator that integrates the principles of a
servo system, operating based on a closed-loop feedback control mechanism. When a
control signal—usually a Pulse Width Modulation (PWM) signal—is input, the pulse
width corresponds to a target angle (for example, 1 ms pulse width corresponds to 0°,
1.5 ms to 90°, and 2 ms to 180°). The control circuit compares the input signal with the
real-time angle feedback from a potentiometer. If there is a deviation, it drives the motor
to rotate. The motor, through a gear reduction mechanism, turns the output shaft, while
the potentiometer rotates synchronously with the output shaft, changing its resistance to
reflect the current angle and feeding this back to the control circuit. This closed-loop
system continuously adjusts the motor’s direction and speed until the actual output shaft
angle matches the target angle, stopping movement to achieve precise angular control
within £0.5°.

Operation Effect Diagram

* When the button is pressed and held, the servo motor rotates to 180°, simulating a
door-opening function, and the LCD screen displays “Welcome.”

* When the button is released, the servo motor returns to 0°, simulating a door-closing
function.

Key Explanations

1. Hardware Initialization and Connections

This section of the code defines three core
hardware components: the servo motor, the
button, and the LCD screen. It also specifies how
they are connected to the microcontroller.

Servo myservo;
int buttonPin = 7;

Adafruit_LiquidCrystal lcd(1);

2. Servo Motor Parameter Configuration

myservo.attach(9, 600, 2520)

» Parameter Explanation:
« 9: Signal pin connected to the servo.
» 600: Minimum pulse width in microseconds, corresponding to the 0° position.
» 2520: Maximum pulse width in microseconds, corresponding to the 180° position.

» Extended Angle Principle: The standard pulse range for servo motors is typically
1000-2000 ps. However, some servos support an extended range (e.g., 600-2520 pys),
which allows rotation beyond 180°, depending on the servo's mechanical design.

3. Button Detection and State Control

if (!digitalRead(buttonPin))
{
myservo.write(180);
Icd.setCursor(0, 0);
Icd.print("Welcome");
}
else
{
myservo.write(0);
Icd.setCursor(0, 0);
lcd.print(" ");

This section represents the core logic of
the code. It controls the servo motor's
rotation and the LCD display based on
the button’s state:

if (digitalRead(buttonPin)) { ... }

> Voltage Logic:

When the button is not pressed, pin 7 is held HIGH (logic 1) via an internal pull-up
resistor.

When the button is pressed, the pin is pulled LOW (logic 0) to ground, and
ldigitalRead(buttonPin) evaluates to true.

« When the button is pressed, the servo rotates to 180°, simulating an "open door"
motion, and the LCD displays "Welcome".

» When the button is released, the servo returns to 0°, simulating a "close door"
motion, and the LCD is cleared (by printing a blank space).

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After learning the above code, you can adjust the functions based on the original code:
simply press the button to make the servo motor operate (no need to hold the button
continuously), and press the button again to restore the servo to its initial angle.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since the servo motor used in this lesson requires additional library files to function
properly, you need to add the appropriate libraries before uploading the code to ensure
it runs correctly.

The Servo library (version 1.2.2) for the servo motor was explained in detail in Lesson
12. You can refer to the installation steps for the servo library in Lesson 12.

Secondly, the LCD screen used in this lesson also requires additional library files for
driving. Therefore, before uploading the code, we need to add appropriate library files to
ensure the normal operation of the code.

The Adafruit_LiquidCrystal library (version 2.0.4) for the LCD screen was explained in
detail in Lesson 4. You can refer to the installation steps for the LCD library in Lesson 4.

Now that the library files have been downloaded, you can proceed to upload the code
used in this lesson.

The code upload steps for this lesson are the same as those in the first lesson. Please
refer to the first lesson for details!

After the upload is successful, pressing the button on the All-in-one Starter Kit for
Arduino will make the servo rotate to 180°, and the screen will display "Welcome".

Lesson 17 - PIR Control Light

Introduction

In this chapter, we will delve into advanced application scenarios of the PIR motion
sensor, with a focus on implementing intelligent control of an LED lighting system based
on motion detection signals. By analyzing the characteristics of sensor data and the
logic behind lighting control, you will master the complete closed-loop process—from
signal acquisition and status evaluation to execution control—laying a solid technical
foundation for building smart environment-sensing systems.

Hardware Used in This Lesson:

e,
Working Principle of PIR Motion Sensor

A PIR (Passive Infrared) motion sensor operates by detecting changes in infrared
radiation emitted by humans or animals. Its core component is a pyroelectric sensor,
which senses variations in infrared levels when an object moves within its detection
range. These changes are caused by the difference in thermal radiation between the
moving object and the background. The detected signals are then amplified and
converted into electrical signals, resulting in a change in output level. This enables
non-contact motion detection, making PIR sensors widely used in applications such as
security alarms and smart home systems for automatic human presence sensing.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition
from a higher to a lower energy level, releasing excess energy in the form of
photons—producing visible light. The color (wavelength) of the light depends on the
bandgap of the semiconductor material. This process is a direct application of
electroluminescence.

Operation Effect Diagram

When the PIR motion sensor detects

movement, the LED turns on.) g

Red LED

When no motion is detected by the
PIR motion sensor, the LED turns off.

Red LED

Key Explanations

1. Hardware Connection and Variable Definition

#define PIR_PIN A2

static int oldState = 0;
int LedPin = 10;

PIR Sensor: Connected via analog pin A2 to read signals, though it actually uses digital
signals (HIGH/LOW).

State Variable: oldState is used to store the previously detected state, enabling the
program to determine whether the current state has changed.

2. Initialization Setup (setup() function)

void setup() {
pinMode(PIR_PIN, INPUT);
pinMode(LedPin, OUTPUT);

}

Pin Mode Configuration: Set the
PIR sensor pin as input, and the
LED pin as output.

3. Main Loop Logic (loop() function)

» State Detection:

voidloop({ - state = digitalRead(PIR_PIN): Read
byte state = digitalRead(PIR_PIN); the PIR sensor status (HIGH = motion
if(state && oldState != state) { detected, LOW = no motion).

SRTEL AT ol dEaelt; « oldState != state: Check if the state

oldState = state; has changed to avoid redundant
digitalWrite(LedPin, HIGH); triggers.

sl (En Ly Motion Detected Branch:

« if(state && oldState != state):
Triggered when motion is detected and
the state changes.

v

}
else if(Istate && oldState != state) {

Serial.printin("[-] No Motion!");
digitalWrite(LedPin, LOW);
oldState = state;

« Log output: "Motion detected!"
} * Turn on the LED (HIGH).

delay(20); « Critical Delay: delay(5000) keeps the
} LED on for 5 seconds, ignoring new
motion detections during this period.

» No Motion Branch:

- else if(!state && oldState != state): Triggered when motion stops and the state
changes.

* Log output: "No Motion!"
* Turn off the LED (LOW).

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, you can enhance the functionality by improving the
code's responsiveness. This allows the PIR sensor to continuously monitor for motion
without being blocked by delays.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so that we can see the hardware functions in action.

The code upload steps for this lesson are the same as those in Lesson 1. Please refer
to Lesson 1 for detailed instructions!

Once the upload is successful, you will see that the LED on the All-in-one Starter Kit for
Arduino lights up when the PIR sensor detects your movement.

Implementation: You'll observe that when you wave your hand or walk within the
sensing range of the PIR motion sensor, the LED will turn on for 5 seconds. If there is
no motion detected within the range, the LED will remain off.If this behavior does not
occur as expected, please double-check that the code has been uploaded to the board
successfully.

Lesson 18 - Sound Reminder

Introduction

In this lesson, we will learn the practical operation of a sound sensor. By using the sound
sensor to detect the ambient noise level, the system will trigger a buzzer to sound an
alarm whenever a sound is detected. This demonstrates a simple sound-activated alert
function.

Hardware Used in This Lesson:

Working Principle of the Sound Sensor

A sound sensor primarily uses a microphone or an electret condenser microphone to
capture ambient sound waves. These sound waves cause the diaphragm inside the
sensor to vibrate, which results in changes in internal capacitance or resistance. This
variation converts the sound signal into an electrical signal. The signal is then amplified
by an internal circuit and processed through filtering and conditioning to produce either
an analog voltage or a digital signal corresponding to the sound intensity.When the
detected sound reaches a preset threshold, the sensor activates a corresponding
circuit—such as triggering a buzzer—to respond to the environmental sound. Sound
sensors are commonly used in applications like voice-activated switches and alarm
systems.

Working Principle of a Buzzer

A buzzer is an electronic component that converts electrical signals into sound signals,
operating based on either electromagnetic induction or the piezoelectric effect. An
electromagnetic buzzer contains a coil, a magnet, and a vibrating diaphragm. When
current flows through the coil, it generates a magnetic field that interacts with the
permanent magnet, causing the diaphragm to vibrate and produce sound. The presence
and pitch of the sound can be controlled by modulating the current's frequency and
duration. In contrast, a piezoelectric buzzer uses piezoelectric materials (such as
piezoceramics) that deform mechanically when an alternating voltage is applied—a
phenomenon known as the inverse piezoelectric effect. This deformation drives the
diaphragm to vibrate and emit sound at a specific frequency. Both types of buzzers
require external circuitry for proper operation and are commonly used in alarms,
electronic alerts, and notification systems.

Operation Effect Diagram

When the sound sensor detects a value exceeding the threshold of 400, the buzzer will
sound:

Once the program runs successfully, you'll observe the following behavior:If the
surrounding noise is too loud, or you shout directly at the sound sensor, the buzzer will
emit a one-second “beep” to alert you to lower the volume.If the noise continues to stay
above the threshold, the buzzer will keep beeping repeatedly.When the environment
becomes quiet again and the sound level drops below the threshold, the buzzer will stop
automatically.

Key Explanations

1. Hardware Connection and Variable Definition

#define SOUND_PIN A1
buzzerPin = 3;

Sound Sensor: Outputs an analog signal (usually 0-1023), where a higher value
indicates louder sound.

Buzzer: Driven by the tone() function and must be connected to a PWM-capable pin.
2. Initialization (setup function)

void setup() {
pinMode(SOUND_PIN, INPUT);
pinMode(buzzerPin, OUTPUT);

}

Set the pin modes clearly: the sound sensor pin as input and the buzzer pin as output.

3. Main Loop Logic (loop() function)

void loop() {
if (analogRead(SOUND_PIN) >= 400) {
Serial.printin("[-] Detect Sound!");
tone(buzzerPin, 1300);
delay(1000);
while (1) {
if (analogRead(SOUND_PIN) >= 400) {
Serial.printin(analogRead(SOUND_PIN));
}else {
noTone(buzzerPin);
break;

105

» Sound Detection and Initial Response:

analogRead(SOUND_PIN) >= 400: Check if the sound level exceeds the threshold
(400).

tone(buzzerPin, 1300): Activate the buzzer to emit a 1300Hz tone.

delay(1000): Force a 1-second delay during which other events are not processed.
» Continuous Monitoring:

while (1): Enter an infinite loop to continuously monitor the sound status.

* When the sound remains above the threshold:

Output the current sound value via serial communication.

* When the sound falls below the threshold:

noTone(buzzerPin): Stop the buzzer.

break: Exit the loop and wait for the next sound trigger.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the above code, you can modify its functionality—for example, adjust the
sound threshold value and customize the trigger mechanism when the threshold is
exceeded based on the existing code.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

The code upload steps for this lesson are the same as those in Lesson 1. Please refer
to Lesson 1 for detailed instructions!

After the upload is successful, you will be able to hear the buzzer on the All_in_one
Starter Kit for Arduino sound an alarm when the sound sensor detects noise above the
threshold.

Implementation:You will notice that if the surrounding noise is too loud or you shout
directly at the sound sensor, the buzzer will beep for one second to remind you to lower
the volume. If the noise remains high, the buzzer will continue beeping. When there is
no sound, the buzzer will stop sounding.

Lesson 19 - Calculation of Acceleration

Introduction

In this lesson, we will learn how to operate the LSM6DS3TR sensor. By moving the
All_in_one Starter Kit for Arduino, you will see data changes on the display. This
sensor can detect and calculate acceleration values in different directions, helping us
understand how to acquire and use these acceleration data to implement various
interactive functions.

Hardware Used in This Lesson:

LCD module

LSM6DS3TR
Accelerometer Sensor

Working Principle of the LSM6DS3TR Accelerometer Sensor

The LSM6DS3TR sensor operates based on Micro-Electro-Mechanical Systems
(MEMS) technology. Its internal accelerometer measures linear motion by detecting
capacitance changes caused by a proof mass under acceleration. The gyroscope, on
the other hand, utilizes the Coriolis effect, calculating angular velocity from phase shifts
in vibrating structures during rotation. The sensor converts the analog signals sensed by
the MEMS structures into digital signals, which are then processed by internal digital
filters. It outputs three-axis acceleration and three-axis angular velocity data via 12C or
SPI interfaces. Additionally, its built-in motion detection logic can automatically identify
states such as free fall or step counting based on preset thresholds, operating without
continuous intervention from the main controller, thereby enabling low-power operation.

Operation Effect Diagram

When you move the All_in_one Starter Kit for Arduino, you will see the acceleration data
for the three axes displayed on the screen:

@@ Gl —
: »’m?na*nﬁ HE.E n..y. :
7 o-Daﬁ-Doaﬁ

After successful operation, the LCD will show the accelerometer values for the X, Y, and
Z axes. When you move the accelerometer quickly along any axis, you will observe the
corresponding accelerometer value changing accordingly on that axis.

Key Explanations

1. Data Storage

float 31 accel[0~2]: Corresponding to acceleration
slictes Bl values of X, Y, Z axes (unit: m/s?)

2. LCD Display Control
Screen Clear Function

void LCD_print(String txt1, String txt2)

{
Icd.setCursor(0, 0); lcd.print(" ; Implementation Principle:
Icd.setCursor(0, 1); lcd.print(" ; Overwrite original characters with
Icd.setCursor(0, 0); lcd.print(txt1); spaces (16 spaces correspond to
Icd.setCursor(0, 1); lcd.print(txt2); the LCD width).

}

Icd.setCursor(0, 0); Icd.print("
Icd.setCursor(0, 1); lcd.print("

Clear and initialize both the first and second rows of the LCD screen.

Icd.setCursor(0, 0); lcd.print(txt1);
Icd.setCursor(0, 1); lcd.print(txt2);

Display the desired text content on the first and second rows.

3. Initialization Function (setup)

void setup() {

Wire.begin();

Serial.begin(115200);

Wire.begin();

writeRegister(CTRL1_XL, 0x48);

writeRegister(CTRL2_G, 0x40);

while (!lcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);

}

Icd.setCursor(0, 0);

Icd.print("ax:");

Icd.setCursor(8, 0);

Icd.print("ay:");

Icd.setCursor(0, 1);

Icd.print("az:");

Code Decomposition Explanation:

» Initialize 12C communication:
Wire.begin();

Wire.begin(): Initializes the 12C bus to ensure communication with the LSM6DS3TR
sensor.

109

» Configure Accelerometer and Gyroscope

writeRegister(CTRL1_XL, 0x48);

writeRegister(CTRL2_G, 0x40);

writeRegister(CTRL1_XL, 0x48): Configures the accelerometer output data rate to
104Hz and range to 4g.

The writeRegister function is pre-defined in the "LSM6DS3TR.h" file and is called here to
prepare for acquiring acceleration values.

writeRegister(CTRL2_G, 0x40): Configures the gyroscope output data rate to 104Hz and
range to 250dps.

» Set LCD Display Content

Icd.setCursor(0, 0);

Icd.print("ax:");

Icd.setCursor(8, 0);

lcd.print("ay:"); Display ax:, ay:, az: on the first and second
Icd.setCursor(0, 1); rows of the LCD to show the X, Y, Z axis data

Icd.print("az:"); of the accelerometer.

4. Getting Accelerometer Data (Get_Value)

void Get_Value() {
uint8_t data[6];
readRegister(OUTX_L_XL, data, 6);
for (inti=0;i<3;i++){

accel[i] = (int16_t)(datali * 2] | (data[i * 2 + 1] << 8)) * ACCEL_SENSITIVITY * 9.80;
}
}

» Define data array: uint8_t data[6] is used to store the 6 bytes of data read from the
sensor.

» Read accelerometer data:

* readRegister(OUTX_L_XL, data, 6): Reads 6 bytes of data starting from the
accelerometer register OUTX_L_XL.

» «for (inti=0;i<3;i+t+): Converts the 6 bytes of data into 3 16-bit integers represent-
ing acceleration values along the X, Y, and Z axes.

> « (int16_t)(datali * 2] | (data[i * 2 + 1] << 8)): Combines two bytes into a single 16-bit
integer.

» « ACCEL_SENSITIVITY * 9.80: Converts the raw acceleration value into meters per

second squared (m/s?), where ACCEL_SENSITIVITY is the sensor’s sensitivity
constant, typically 0.061 mg/LSB.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the above code, you can further enhance the functionality by, for example,
setting acceleration thresholds and using changes in acceleration states to control the
responses of other hardware devices.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

This lesson still requires the use of the Adafruit_LiquidCrystal library (version 2.0.4);
please refer to Lesson 4 for installation instructions.

In addition, we need to put the LSM6DS3TR.h library file and the main code file in the
same path so that they can be recognized during compilation.

£ L 19 Calculation_of accelerationino
€ LSM6DS3TR.h

L —
Here, you need to click the link below to download the LSM6DS3TR.h library file:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/libraries

After downloading, remember to put the LSM6DS3TR.h library file together with your
main code.

~
Name Date modified

' L_19_Calculation_of_acceleration.ino T/22/202511:51 AM

/€] LSMBDS3TR.h /2272025 11:51 AM

Then check whether there is Adafruit_LiquidCrystal in the specified library file compila-
tion path.

7 Adafruit_BuslO 6/25/2025 6:19 PM File folder
I 7 Adafruit_LiquidCrystal I 6/25/2025 6:19 PM File folder
.__ Adafruit MCP23017_Arduine_Library 6/25/2025 6:19 PM File folder
2 BHIT50 6/25/2025 6:19 PM File folder

Arduino IDE Library Folder Path Setup:

mun Skeich Tools Help
tem Sketeh N g %
Hew Cloud Skeich AteCir=N T ‘
dsplayino
Open. Cre0 AL shpey
1 winclude "Adefrult_Liguidcrystal.h™
Open Recent B
Skrtchbaok | 3 Adafruit_LiquidCrystal lcd(1);
' a
o B
Eumpies ! : ;
Close culew / r sety e 1
B 6 setup code here, to run once:
St s . 7 in{115208);
Iphanumericalqui M egin(16, 2)) {
i Witimimiin "-‘;L‘I“‘“:E""] a Ser tln{"Could not init backpack. Check wiring.”);
CutComma 1701 LAUIECHAL 10 delay(s0);
1n }
Adnnced i) 12 Serial .println("Backpack init'd."):
it -a 13 lcd.setCursor(d, 8);
—_— 14 | led.print("HELLO WORLD™);
15 | delay(1e88);
Adafruit LiquidCrystal by Adafuit 15 led. setCursor(d, 1):
—— 17| lcd.print(“ye ye");
Fork of LiquidCrystal DA TB0-compatible LCD 4 “k;'y:'w“)f
Griver Worary, now wh support for ATtinydS, Fork R CIAAr)
of LiquidCrystal HD44 780-compatible LCD drive... 20 led. setBacklight(@):
Moreinfo n)
2
204 v REMOVE 21 votd 1oop() {
24 | // put your maln code here, to run repeatedly:
5
%}
AsyncLiquidCrystal by Paulo Costa i

Preferences X

Settings | Network

Sketchbook location
c\Users\14175\Documents\Arduino |
O Show files inside Sketches.

Editor font size: 14

BROWSE

Interface scale G Automatic 100 %

The code upload procedure for this lesson is the same as in Lesson 1; please refer to
Lesson 1 for detailed steps.

After successful uploading, you will see the LCD screen on the All_in_one Starter Kit for
Arduino display acceleration data for the three axes.

Implementation: When running the program, the LCD will show the accelerometer
values for the X, Y, and Z axes. As you quickly move the accelerometer along an axis,
you will observe the corresponding accelerometer value change accordingly.

Lesson 20 - Smart Corridor Light

Introduction

In this lesson, we will study advanced control techniques for the integration of sound
sensors, PIR motion sensors, light sensors, and LEDs. By fusing data from multiple
sensors and coordinating their logic, we will realize an intelligent corridor lighting system
that combines human presence detection, ambient light assessment, and sound-triggered
activation. This will help you master hardware connections and programming methods for
multi-sensor collaborative operation.

Hardware Used in This Lesson:

s@s’\@

Sound Sensor

Working Principle of Photoresistor Sensor

The working principle of a photoresistor sensor is based on the photoelectric effect in
semiconductor materials. When light irradiates its photosensitive element (such as a
photoresistor or photodiode), the photon energy excites electrons in the semiconductor,
generating free electrons and holes. This alters the electrical properties of the element
(such as resistance, current, or voltage), thereby converting light signals into electrical
signals. For example, the resistance of a photoresistor decreases as light intensity
increases, while the reverse current of a photodiode under reverse bias increases with
light intensity. These variations are processed by circuits to produce analog or digital
output signals.

Working Principle of the Sound Sensor

A sound sensor primarily uses a microphone or an electret condenser microphone to
capture ambient sound waves. These sound waves cause the diaphragm inside the
sensor to vibrate, which results in changes in internal capacitance or resistance. This
variation converts the sound signal into an electrical signal. The signal is then amplified
by an internal circuit and processed through filtering and conditioning to produce either
an analog voltage or a digital signal corresponding to the sound intensity.When the
detected sound reaches a preset threshold, the sensor activates a corresponding
circuit—such as triggering a buzzer—to respond to the environmental sound. Sound
sensors are commonly used in applications like voice-activated switches and alarm
systems.

Working Principle of PIR Motion Sensor

A PIR (Passive Infrared) motion sensor operates by detecting changes in infrared
radiation emitted by humans or animals. Its core component is a pyroelectric sensor,
which senses variations in infrared levels when an object moves within its detection
range. These changes are caused by the difference in thermal radiation between the
moving object and the background. The detected signals are then amplified and
converted into electrical signals, resulting in a change in output level. This enables
non-contact motion detection, making PIR sensors widely used in applications such as
security alarms and smart home systems for automatic human presence sensing.

Working Principle of an LED

The core of an LED (Light Emitting Diode) is a semiconductor PN junction. When a
forward bias voltage is applied, electrons from the N-type region recombine with holes
from the P-type region near the junction. During recombination, electrons transition from
a higher to a lower energy level, releasing excess energy in the form of photons—pro-
ducing visible light. The color (wavelength) of the light depends on the bandgap of the
semiconductor material. This process is a direct application of electroluminescence.

na

Operation Effect Diagram

When the ambient light is strong, the LED will remain off regardless of any motion or
sound detected.

Red LED

When the ambient light is dim or the photoresistor sensor is covered, the LED is initially
off by default.

At this time, if motion or sound is detected, the LED will turn on for 10 seconds and then
turn off.

* motion is detected

* sound is detected

If there is continuous motion or continuous sound, the LED will stay on continuously until
no activity is detected. After that, it will remain on for an additional 10 seconds before

turning off.

Key Explanations

1. Initialization Function (setup)

void setup() {
Serial.begin(115200);
Wire.begin();
if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c, &Wire)) {
Serial.printin(F("BH1750 Advanced begin"));
}else {

Serial.printin(F("Error initialising BH1750"));
}
pinMode(PIR_PIN, INPUT);
pinMode(LedPin, OUTPUT);
pinMode(SOUND_PIN, INPUT);

> Initialize the 12C bus: Wire.begin() is used to initialize the 12C bus to ensure communi-
cation with the BH1750 sensor.

» Initialize the BH1750 light intensity sensor:
if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5¢c, &Wire))

 Use lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c, &Wire) to
initialize the sensor in continuous high-resolution mode (BH1750::CONTINU-
OUS_HIGH_RES_MODE).

« If initialization is successful, print “BH1750 Advanced begin”; otherwise, print an error
message.

» Set pin modes:
* PIR_PIN (A2) is set as input, connected to the PIR motion sensor.
» LedPin (10) is set as output to control the LED.

*« SOUND_PIN (A1) is set as input, connected to the sound sensor.

2. Loop Function (loop)

» Read light intensity value:

[if (lightMeter.measurementReady(true)) }

116

Use lightMeter.measurementReady(true) to check if the light sensor data is ready.

[int lux = lightMeter.readLightLevel(); }

Use lightMeter.readLightLevel() to read the light intensity value (in lux).

Control LED and sensors based on light intensity:

{ if (lux < 100) }

« If the light intensity is less than 100 lux:

while (1) {
int state = digitalRead(PIR_PIN);
if (state == HIGH || digitalRead(SOUND_PIN)) {

Enter an infinite loop to continuously monitor the state of the PIR sensor and sound
sensor.

digitalWrite(LedPin, HIGH);
delay(10000);

If motion or sound is detected, turn on the LED and delay for 10 seconds.

else if (state == LOW && digitalRead(SOUND_PIN) == LOW) {
digitalWrite(LedPin, LOW);
}

If no motion or sound is detected, turn off the LED.

lux = lightMeter.readLightLevel();
if (lux >= 100)
break;

Re-read the light intensity value in each loop iteration; if the light intensity reaches or
exceeds 100 lux, break out of the loop.

else if (lux >= 100
(] Else if the light intensity is greater than

digitalWrite(LedPin, LOW); or equal to 100 lux, turn off the LED.
}

L —
Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After studying the code above, we trust that your logical thinking abilities have been
further enhanced, enabling you to coordinate and control multiple hardware resources
simultaneously. Next, we recommend optimizing the logic design to achieve clear and
systematic control over the entire hardware system.

Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since this lesson uses the light sensor again, a reminder: please refer to Lesson 6 to
install the BH1750 library (version 1.3.0).

Now that the library has been successfully installed, we can proceed to upload the code
used in this lesson.

The code upload steps for this lesson are the same as those in Lesson 1. Please refer
to Lesson 1 for detailed instructions.

Once the upload is successful, you can start the experiment:

Cover the light sensor with your hand, then wave your hand to simulate motion
detection by the PIR sensor—you should see the LED turn on.

Alternatively, make a sound—if the sound sensor detects it, the LED will also turn on.

Implementation: When the ambient light is strong, the LED will remain off regardless of
any motion or sound. When the ambient light is dim or the light sensor is covered, the
LED will default to the off state. At this time, if motion or sound is detected, the LED will
light up for 10 seconds and then turn off. If motion or sound continues, the LED will
remain on until all activity stops, and then it will stay lit for another 10 seconds before

turning off. If no behavior is observed, please double-check to ensure your code
matches exactly.

Lesson 21 - Simple Calculator

Introduction

In this chapter, we will explore advanced application scenarios of infrared remote
control, learning how to use the remote to input numerical values and expressions, with
real-time display of the input content on the screen. When the confirmation button is
pressed, the system will automatically parse and evaluate the expression, and finally
present the calculation result on the screen. This lesson aims to equip you with a
complete understanding of infrared remote interaction and data processing workflows.

Hardware Used in This Lesson:

S

LCD module
IR Control

2
2
z
H

000000606,
00000606
0000000

Working Principle of Infrared Remote Control and Receiver

The working principle of an infrared (IR) remote control and receiver is based on the
transmission of encoded infrared signals and their subsequent decoding and execution.
When a button is pressed on the remote control, the internal encoding circuit converts
the button input into a specific binary code format (such as NEC or RC-5 protocol). This
code is then modulated—typically using a 38kHz carrier frequency to reduce interfer-
ence—and transmitted as infrared light pulses (around 940nm wavelength) via an IR
LED. On the receiving side, an IR receiver module (e.g., HS0038) detects the incoming
IR signal using a photodiode. The received signal is then amplified, filtered, and
demodulated to recover the original binary code. This decoded signal is interpreted by a
microcontroller or main processing unit, which then performs the corresponding
action—such as adjusting a servo angle or switching an appliance on or off. The entire
process follows a closed loop: button encoding — infrared modulation and
transmission — photodetection and signal decoding — command execution,
enabling effective wireless ¢

L —
Working Principle of the LCD Screen

The LCD1602 screen (a 16x2 character liquid crystal display) operates based on the
electro-optical effect of liquid crystals. By controlling the electric field, it changes the
alignment of liquid crystal molecules to produce visual display effects. Internally, it
mainly consists of the LCD panel, a controller (such as the HD44780 or a compatible
chip), driver circuits, and a backlight module.

The controller receives commands and data from a microcontroller or other devices.
Through the driver circuits, electrical signals are applied to the segment electrodes and
common electrodes of the LCD. Under the electric field, the liquid crystal molecules twist
and bend at corresponding positions, altering the amount of light passing through. This
causes pixels to appear either bright or dark, which combine to form characters or
patterns.

The backlight module (usually LEDs) provides illumination to ensure clear visibility even
in low-light environments. Data transmission occurs via parallel or serial interfaces (such
as 12C or SPI). The microcontroller sends commands (e.g., setting display mode, cursor
position) and display content (ASCII character codes) according to the communication
protocol. The controller interprets these instructions and drives the corresponding pixels
to light up, ultimately displaying characters within the 16-column by 2-row display area.

Operation Effect Diagram

When not running:

'nm5#1==—m-g { Mo

=™ . kf
=7 Saimc® U= I

When a button is pressed on the infrared remote to perform an addition operation:

When a button is pressed on the infrared remote to perform a subtraction operation:

Key Explanations

1. Initialization Function (setup)

void setup() {
Serial.begin(115200);
while (!Serial);
IR.Init(IR_PIN);
Serial.printIn("init over");
while (!lcd.begin(16, 2)) {
Serial.printin("Could not init backpack. Check wiring.");
delay(50);
}
Icd.setCursor(0, 0);
Icd.print("Equal to:");
Icd.setCursor(0, 1);
}

» Initialize Serial Communication: Sets the baud rate to 115200 for debugging and
monitoring.

> Initialize IR Receiver Module: IR.Init(IR_PIN) initializes the infrared receiver module,
where IR_PIN is defined as digital pin 2.

> Initialize LCD Screen: Icd.begin(16, 2) attempts to initialize the LCD screen. If
initialization fails, an error message is printed, and the system delays 50 milliseconds
before retrying until success.

» Set Initial LCD Display Content: The first line of the LCD displays “Equal to:”, while the
second line is left blank to display the calculation result.

121

2. Main Loop Function (loop)

Read Infrared Data

if (IR.IsDta()) {

byte length = IR.Recv(dta);

IR.IsDta() is used to check whether any infrared data has been received.

IR.Recv(dta) receives the infrared data and stores it in the array dta.

Execute Operation Based on Key Code

switch (dta[8]) {

dta[8] typically contains the key code used to distinguish different buttons.
Button 144 (EQ)

case 144: Serial.printin("[EQ]");
num +='=";

num3 = "Equal to:";
if (sliceString(num, num1, num2)) {

» Add the equal sign = to the string num.
» Attempt to parse the expression:

* sliceString(num, num1, num2): Slice the string num into two operands num1
and num2.

« If parsing is successful:
* Check if the operands are within the valid range (0 to 100000000).
« If operands exceed the range, display an error message.

» Otherwise, perform addition or subtraction based on the operator and
display the result on the LCD.

« If parsing fails, display an error message.

3. Auxiliary Functions

sliceString Function
Locating Operator and Equals Sign Positions

int plusindex = input.indexOf('+');
int equallndex = input.indexOf('=");

input.indexOf('+'): Searches for the first occurrence of the plus sign + in the string and
returns its index. Returns -1 if no plus sign is found.

input.indexOf('="): Searches for the first occurrence of the equals sign = in the string
and returns its index. Returns -1 if no equals sign is found.

Validating Operator and Equals Sign

if (plusindex != -1 && equallndex != -1 && equallndex > plusindex) {

Checks if both the plus sign + and equals sign = are found.

Verifies that the equals sign = appears after the plus sign + to ensure the expression
format is correct (e.g., 123+456=).

Extracting Operands

part1 = input.substring(0, plusindex);

part2 = input.substring(plusindex + 1, equallndex);

input.substring(0, plusindex): Extracts the first operand from the start of the string to the
position before the plus sign +.

input.substring(plusindex + 1, equallndex): Extracts the second operand from the
position after the plus sign + to the position before the equals sign =.

The sliceString function parses two operands and an operator from the input string by
locating the positions of + and =, extracting operands, and returning the parsing result.
This function is a critical component for implementing mathematical expression parsing
and calculation.

Complete Code

Click the link below to open the complete code:

https://github.com/Elecrow-RD/All-in-one-Starter-Kit-for-Arduino-Common-Board
-Design-Kit/tree/master/example/all%20in%200ne%20Arduino

After learning the above code, you have done a great job and successfully completed
the most difficult part of the code in this course. If you are still interested, you can add
some other calculation processing logics by yourself, such as multiplication and so on.

123

L —
Uploading the Code

The code explanation is complete. Next, we need to upload the above code to the
All-in-one Starter Kit for Arduino so we can see the hardware functions in action.

Since this lesson uses the IRSendRev library, please refer to Lesson 13 if you haven't
installed it!

Additionally, the Adafruit_LiquidCrystal library (version 2.0.4) is used for screen
display. Please refer to Lesson 4 if you haven't installed it!

After completing the above operations to install the library files, you can now upload the
code we are using.

The code upload steps for this lesson are the same as those in the first lesson.
Please refer to the first lesson!

Once the upload is successful, you will be able to use the infrared remote control to
press the buttons on the remote to perform addition and subtraction calculations, and
observe the calculation process and results on the LCD screen.

SELECROW
MAKE YOUR MAKING EASIER

