Product Specification (Preliminary) Part Name: OEL Display Module Part ID: UG-5664ASGGF01 Doc No.: SAS1-E024-A | Sustomer. | |-------------| | Approved by | | | | | | | | | | | | | | | | | | From: | | Approved by | | Approved by | | | | | | | | | 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com ## Revised History | Part Number | Revision | Revision Content | Revised on | |----------------|----------|------------------|-----------------| | UG-5664ASGGF01 | A | New | August 25, 2009 | i 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com ## Contents | Re | visi | on History | i | |------------|-------|---|----------| | No | otice | ? | ii | | | | nts | | | 1. | | sic Specifications | | | | 1.1 | Display Specifications | | | | 1.2 | | | | | 1.3 | • | | | | 1.4 | Mechanical Drawing | 2 | | | 1.5 | Pin Definition | 3 | | | 1.6 | Block Diagram | 6 | | 2. | Ab | solute Maximum Ratings | <i>7</i> | | <i>3</i> . | Opt | tics & Electrical Characteristics | 8~12 | | | 3.1 | Optics Characteristics | 8 | | | 3.2 | DC Characteristics | 8 | | | 3.3 | AC Characteristics | 9 | | | | 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics | 9 | | | | 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics | 10 | | | | 3.3.3 Serial Interface Timing Characteristics (4-wire SPI) | 11 | | | | 3.3.4 Serial Interface Timing Characteristics (3-wire SPI) | 12 | | 4 . | Fu | nctional Specification | 13~14 | | | 4.1 | Commands | | | | 4.2 | <u>r</u> | | | | | 4.2.1 Power up Sequence | | | | | 4.2.2 Power down Sequence | | | | 4.3 | Reset Circuit. | | | _ | | Actual Application Example | | | 5. | | liability | | | | | Contents of Reliability Tests | | | | 5.2 | Lifetime | | | _ | 5.3 | | | | 6. | | tgoing Quality Control Specifications | | | | 6.1 | Environment Required | | | | 6.2 | Sampling Plan | | | | 6.3 | 1 3 | | | | | 6.3.1 Cosmetic Check (Display Off) in Non-Active Area | | | | | 6.3.2 Cosmetic Check (Display Off) in Active Area | | | 7 | ъ. | 6.3.3 Pattern Check (Display On) in Active Area | | | /. | rac | ckage Specifications | 20 | 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A | 8. | Pre | cautions When Using These OEL Display Modules | 21~23 | |----|-----|---|-------| | | | Handling Precautions | | | | | Storage Precautions | | | | | Designing Precautions | | | | 8.4 | Precautions when disposing of the OEL display modules | 23 | | | 8.5 | Other Precautions. | 23 | □景园电子 #### 1.1 Display Specifications 1) Display Mode: Passive Matrix 2) Display Color: Monochrome (Green / 16 Gray Scales) 3) Drive Duty: 1/64 Duty #### 1.2 Mechanical Specifications 1) Outline Drawing: According to the annexed outline drawing 2) Number of Pixels: 256×64 3) Panel Size: $146.00 \times 45.00 \times 2.00 \text{ (mm)}$ 4) Active Area: 135.65 × 33.89 (mm) 5) Pixel Pitch: 0.53 × 0.53 (mm) 6) Pixel Size: 0.50 × 0.50 (mm) 7) Weight: 27.1 (g) #### 1.3 Active Area & Pixel Construction 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com ## 1.5 Pin Definition | Pin Number | Symbol | Type | Function | |--------------|--------|------|---| | Power Supply | y | | | | 26 | VCI | P | Power Supply for Operation This is a voltage supply pin. It must be connected to external source & always be equal to or higher than VDD & VDDIO. | | 25 | VDD | P | Power Supply for Core Logic Circuit This is a voltage supply pin. It can be supplied externally (within the range of 2.4~2.6V) or regulated internally from VCI. A capacitor should be connected between this pin & VSS under all circumstances. | | 24 | VDDIO | P | Power Supply for I/O Pin This pin is a power supply pin of I/O buffer. It should be connected to VDD or external source. All I/O signal should have VIH reference to VDDIO. When I/O signal pins (BS0~BS1, D0~D7, control signals) pull high, they should be connected to VDDIO. | | 2 | VSS | P | Ground of Logic Circuit This is a ground pin. It also acts as a reference for the logic pins. It must be connected to external ground. | | 3, 29 | VCC | P | Power Supply for OEL Panel These are the most positive voltage supply pin of the chip. They must be connected to external source. | | 5, 28 | VLSS | P | Ground of Analog Circuit These are the analog ground pins. They should be connected to VSS externally. | | Driver | | | | | 22 | IREF | I | Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 10uA. | | 4 | VCOMH | P | Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A tantalum capacitor should be connected between this pin and VSS. | | 27 | VSL | P | Voltage Output Low Level for SEG Signal This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, this pin should connect with resistor and diode to ground. | | Testing Pads | | | | | 21 | FR | О | Frame Frequency Triggering Signal This pin will send out a signal that could be used to identify the driver status. Nothing should be connected to this pin. It should be left open individually. | Doc. No: SAS1-E024-A ## 1.5 Pin Definition (Continued) | Pin Number | Symbol | I/O | Function | | | |------------|------------|-----|--|---|---| | Interface | | | | | | | 16
17 | BS0
BS1 | I | Communicating Protocol Select These pins are MCU interface select following table: 3-wire SPI 4-wire SPI 8-bit 68XX Parallel 8-bit 80XX Parallel | BSO 1 0 1 0 | BS1 0 0 1 1 1 | | 20 | RES# | I | Power Reset for Controller and This pin is reset signal input. W initialization of the chip is executed. | | oin is low, | | 19 | CS# | I | Chip Select This pin is the chip select input. The MCU communication only when CS# | | | | 18 | D/C# | I | Data/Command Control This pin is Data/Command control p pulled high, the input at D7~D0 is tre When the pin is pulled low, the inp transferred to the command reg relationship to MCU interface signal Timing Characteristics Diagrams. | eated as di
ut at D7~
gister. | isplay data.
D0 will be
For detail | | 14 | E/RD# | I | Read/Write Enable or Read This pin is MCU interface input. V 68XX-series microprocessor, this pin Enable (E) signal. Read/write operat this pin is pulled high and the CS# is When connecting to an 80XX-micr receives the Read (RD#) signal. D initiated when this pin is pulled low low. When serial mode is selected, this pi to VSS. | n will be used in will be used in its init pulled low roprocessor at a read of word CS: | used as the iated when v. or, this pin operation is # is pulled | | 15 | R/W# | I | Read/Write Select or Write This pin is MCU interface input. V 68XX-series microprocessor, this p Read/Write (R/W#) selection input "High" for read mode and pull it mode. When 80XX interface mode is select the Write (WR#) input. Data write when this pin is pulled low and the C When serial mode is selected, this pi to VSS. | t. Pull to "Low" cted, this poperation is pulled. | be used as his pin to 'for write pin will be is initiated ed low. | | 6~13 | D7~D0 | I/O | Host Data Input/Output Bus These pins are 8-bit bi-direction connected to the microprocessor's da mode is selected, D1 will be the set and D0 will be the serial clock input Unused pins must be connected to V serial mode. | ta bus. V
rial data i
SCLK. | When serial
nput SDIN | 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ## 1.5 Pin Definition (Continued) | Pin Number | Symbol | I/O | Function | |------------|------------|-----|---| | Reserve | | | | | 23 | N.C. | - | Reserved Pin The N.C. pin between function pins are reserved for compatible and flexible design. | | 1, 30 | N.C. (GND) | - | Reserved Pin (Supporting Pin) The supporting pins can reduce the influences from stresses on the function pins. These pins must be connected to external ground. | 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A #### 1.6 Block Diagram MCU Interface Selection: BS0 and BS1 Pins connected to MCU interface: D7~D0, E/RD#, R/W#, D/C#, CS#, and RES# $C1, C3, C5: 0.1\mu F$ $C2, C4: 4.7\mu F$ $C6: 20\mu F$ $C7: 1\mu F$ C8: 4.7uF / 25V Tantalum Capacitor R1: $910k\Omega$, R1 = (Voltage at IREF – VSS) / IREF R2: 50Ω, 1/4W D1: ≤1.4V, 0.5W 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A #### 2. Absolute Maximum Ratings | Parameter | Symbol | Min | Max | Unit | Notes | |---------------------------------------|---------------------|------|----------|------|-------| | Supply Voltage for Operation | V_{CI} | -0.3 | 4 | V | 1, 2 | | Supply Voltage for Logic | $V_{ m DD}$ | -0.5 | 2.75 | V | 1, 2 | | Supply Voltage for I/O Pins | V_{DDIO} | -0.5 | V_{CI} | V | 1, 2 | | Supply Voltage for Display | V_{CC} | -0.5 | 16 | V | 1, 2 | | Operating Current for V _{CC} | I_{CC} | _ | 80 | mA | 1, 2 | | Operating Temperature | T_{OP} | -30 | 70 | °C | _ | | Storage Temperature | T_{STG} | -40 | 80 | °C | _ | Note 1: All the above voltages are on the basis of "VSS = 0V". Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate. Doc. No: SAS1-E024-A 电话:18601955397 QQ:2984664835 淘宝网店:https://shop73023976.taobao.com #### 3. Optics & Electrical Characteristics #### 3.1 Optics Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------|----------|-------------------------|------|---------|------|-------------------| | Brightness | L_{br} | With Polarizer (Note 3) | 60 | 80 | - | cd/m ² | | C.I.E. (Green) | (x) | Without Polarizer | 0.27 | 0.31 | 0.35 | | | C.I.L. (Green) | (y) | | 0.58 | 0.62 | 0.66 | | | Dark Room Contrast | CR | | - | >2000:1 | - | | | View Angle | | | >160 | _ | _ | degree | ^{*} Optical measurement taken at $V_{CI} = 2.8V$, $V_{CC} = 15V$. Software configuration follows Section 4.4 Initialization. #### 3.2 DC Characteristics | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |--|------------------------|--------------------------------|-----------------------|------|-----------------------|------| | Supply Voltage for Operation | V_{CI} | | 2.4 | 2.8 | 3.5 | V | | Supply Voltage for Logic | V_{DD} | | 2.4 | 2.5 | 2.6 | V | | Supply Voltage for I/O Pins | V_{DDIO} | | 1.65 | 1.8 | V_{CI} | V | | Supply Voltage for Display | V_{CC} | Note 3 | 14.5 | 15 | 15.5 | V | | High Level Input | V_{IH} | | $0.8 \times V_{DDIO}$ | _ | V_{DDIO} | V | | Low Level Input | V_{IL} | | 0 | _ | $0.2 \times V_{DDIO}$ | V | | High Level Output | V_{OH} | $I_{out} = 100 \mu A, 3.3 MHz$ | 0.9×V _{DDIO} | _ | V_{DDIO} | V | | Low Level Output | V_{OL} | $I_{out} = 100 \mu A, 3.3 MHz$ | 0 | _ | $0.1 \times V_{DDIO}$ | V | | Operating Current for V _{CI} | I_{CI} | | _ | 1.8 | 2.25 | mA | | Operating Company for V | т | Note 4 | _ | 39.8 | 49.8 | mA | | Operating Current for V _{CC} | I_{CC} | Note 5 | _ | 64.0 | 80.0 | mA | | Sleep Mode Current for V _{CI} | I _{CI, SLEEP} | | _ | 1 | 5 | μΑ | | Sleep Mode Current for V _{CC} | I _{CC, SLEEP} | | _ | 1 | 5 | μΑ | Note 3: Brightness (L_{br}) and Supply Voltage for Display (V_{CC}) are subject to the change of the panel characteristics and the customer's request. Note 4: $V_{CI} = 2.8V$, $V_{CC} = 15V$, 50% Display Area Turn on. Note 5: $V_{CI} = 2.8V$, $V_{CC} = 15V$, 100% Display Area Turn on. ^{*} Software configuration follows Section 4.4 Initialization. Doc. No: SAS1-E024-A #### 3.3 AC Characteristics #### 3.3.1 68XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |-----------------|--------------------------------------|-----|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 300 | - | ns | | t_{AS} | Address Setup Time | 10 | - | ns | | t_{AH} | Address Hold Time | 0 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 40 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 7 | - | ns | | $t_{ m DHR}$ | Read Data Hold Time | 20 | _ | ns | | t _{OH} | Output Disable Time | _ | 70 | ns | | t_{ACC} | Access Time | _ | 140 | ns | | PW_{CSL} | Chip Select Low Pulse Width (Read) | 120 | | ns | | 1 W CSL | Chip Select Low Pulse Width (Write) | 60 | _ | 115 | | PW_{CSH} | Chip Select High Pulse Width (Read) | 60 | | ne | | I W CSH | Chip Select High Pulse Width (Write) | 60 | _ | ns | | t_R | Rise Time | _ | 15 | ns | | $t_{ m F}$ | Fall Time | _ | 15 | ns | ^{*} $(V_{DD} - V_{SS} = 2.4 \text{V to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 2.8 \text{V}, T_a = 25^{\circ}\text{C})$ 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ## 3.3.2 80XX-Series MPU Parallel Interface Timing Characteristics: | Symbol | Description | Min | Max | Unit | |---------------------|--------------------------------------|-----|-----|------| | t _{cycle} | Clock Cycle Time | 300 | - | ns | | t _{AS} | Address Setup Time | 10 | _ | ns | | t_{AH} | Address Hold Time | 0 | _ | ns | | $t_{ m DSW}$ | Write Data Setup Time | 40 | _ | ns | | $t_{ m DHW}$ | Write Data Hold Time | 7 | _ | ns | | $t_{ m DHR}$ | Read Data Hold Time | 20 | - | ns | | t _{OH} | Output Disable Time | _ | 70 | ns | | t_{ACC} | Access Time | _ | 140 | ns | | t_{PWLR} | Read Low Time | 150 | _ | ns | | t_{PWLW} | Write Low Time | 60 | _ | ns | | t _{PWHR} | Read High Time | 60 | _ | ns | | t_{PWHW} | Write High Time | 60 | _ | ns | | t_{CS} | Chip Select Setup Time | 0 | _ | ns | | t_{CSH} | Chip Select Hold Time to Read Signal | 0 | - | ns | | t _{CSF} | Chip Select Hold Time | 20 | - | ns | | t_{R} | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | _ | 15 | ns | * $(V_{DD} - V_{SS} = 2.4 \text{V to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 2.8 \text{V}, T_a = 25 ^{\circ}\text{C})$ 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ## 3.3.3 Serial Interface Timing Characteristics: (4-wire SPI) | Symbol | Description | Min | Max | Unit | |------------------|------------------------|-----|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 100 | - | ns | | t_{AS} | Address Setup Time | 15 | - | ns | | t _{AH} | Address Hold Time | 15 | _ | ns | | t _{CSS} | Chip Select Setup Time | 20 | _ | ns | | t _{CSH} | Chip Select Hold Time | 10 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 15 | _ | ns | | $t_{ m DHW}$ | Write Data Hold Time | 15 | - | ns | | t_{CLKL} | Clock Low Time | 20 | _ | ns | | t_{CLKH} | Clock High Time | 20 | _ | ns | | t_{R} | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | _ | 15 | ns | * $(V_{DD} - V_{SS} = 2.4 \text{V to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 2.8 \text{V}, T_a = 25^{\circ}\text{C})$ 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ## 3.3.4 Serial Interface Timing Characteristics: (3-wire SPI) | Symbol | Description | Min | Max | Unit | |------------------|------------------------|----------|-----|------| | $t_{ m cycle}$ | Clock Cycle Time | 100 | - | ns | | t_{AS} | Address Setup Time | 15 | - | ns | | t_{AH} | Address Hold Time | 15 | - | ns | | t _{CSS} | Chip Select Setup Time | 20 | - | ns | | t _{CSH} | Chip Select Hold Time | 10 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 15 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 15 | _ | ns | | t_{CLKL} | Clock Low Time | 20 | - | ns | | t_{CLKH} | Clock High Time | 20 | - | ns | | t_R | Rise Time | _ | 15 | ns | | t_{F} | Fall Time | - | 15 | ns | * $(V_{DD} - V_{SS} = 2.4 \text{V to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 2.8 \text{V}, T_a = 25 ^{\circ}\text{C})$ Doc. No: SAS1-E024-A #### 4. Functional Specification #### 4.1. Commands Refer to the Technical Manual for the SSD1322 #### 4.2 Power down and Power up Sequence To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation. #### 4.2.1 Power up Sequence: - 1. Power up $V_{CI} \& V_{DDIO}$ - 2. Send Display off command - 3. Initialization - 4. Clear Screen - 5. Power up V_{CC} - 6. Delay 100ms (When V_{CC} is stable) - 7. Send Display on command #### 4.2.2 Power down Sequence: - 1. Send Display off command - 2. Power down V_{CC} - 3. Delay 100ms (When V_{CC} is reach 0 and panel is completely discharges) - 4. Power down V_{CI} & V_{DDIO} #### 4.3 Reset Circuit When RES# input is low, the chip is initialized with the following status: - 1. Display is OFF - 2. 480×128 Display Mode - 3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h) - 4. Display start line is set at display RAM address 0 - 5. Column address counter is set at 0 - 6. Normal scan direction of the COM outputs - 7. Contrast control registers is set at 7Fh Doc. No: SAS1-E024-A 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com #### 4.4 Actual Application Example Command usage and explanation of an actual example #### <Initialization> If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A #### 5. Reliability #### 5.1 Contents of Reliability Tests | Item | Conditions | Criteria | | |-----------------------------------|--|-----------------|--| | High Temperature Operation | 70°C, 240 hrs | | | | Low Temperature Operation | -30°C, 240 hrs | | | | High Temperature Storage | 80°C, 240 hrs | The operational | | | Low Temperature Storage | -40°C, 240 hrs | functions work. | | | High Temperature/Humidity Storage | 60°C, 90% RH, 120 hrs | | | | Thermal Shock | -40°C ⇔ 85°C, 24 cycles
60 mins dwell | | | ^{*} The samples used for the above tests do not include polarizer. #### 5.2 Lifetime End of lifetime is specified as 50% of initial brightness reached. | Parameter | Min | Max | Unit | Condition | Notes | |---------------------|--------|-----|------|---|-------| | Operating Life Time | 40,000 | 1 | hr | 80 cd/m ² , 50% Checkerboard | 6 | Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions. #### 5.3 Failure Check Standard After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 23±5°C; 55±15% RH. ^{*} No moisture condensation is observed during tests. #### 6. Outgoing Quality Control Specifications #### 6.1 Environment Required Customer's test & measurement are required to be conducted under the following conditions: Doc. No: SAS1-E024-A Temperature: 23 ± 5 °C Humidity: $55 \pm 15 \% RH$ Fluorescent Lamp: 30W Distance between the Panel & Lamp: ≥ 50 cm Distance between the Panel & Eyes of the Inspector: ≥ 30 cm Finger glove (or finger cover) must be worn by the inspector. Inspection table or jig must be anti-electrostatic. #### 6.2 Sampling Plan Level II, Normal Inspection, Single Sampling, MIL-STD-105E #### 6.3 Criteria & Acceptable Quality Level | Partition | AQL | Definition | |-----------|------|---| | Major | 0.65 | Defects in Pattern Check (Display On) | | Minor | 1.0 | Defects in Cosmetic Check (Display Off) | #### 6.3.1 Cosmetic Check (Display Off) in Non-Active Area | Check Item | Classification | Criteria | |---------------------------|----------------|--| | Panel
General Chipping | Minor | X > 10 mm (Along with Edge) Y > 1.5 mm (Perpendicular to edge) | Doc. No: SAS1-E024-A ## 6.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued) | Check Item | Classification | Criteria | |--|----------------|--| | CHECK ITEM | Ciassification | Cineria | | Panel Crack | Minor | Any crack is not allowable. | | Cupper Exposed (Even Pin or Film) | Minor | Not Allowable by Naked Eye Inspection | | Film or Trace Damage | Minor | This pool of the second | | Glue or Contamination
on Pin
(Couldn't Be Removed
by Alcohol) | Minor | | | Terminal Lead Prober
Mark | Acceptable | | | Ink Marking on Back
Side of panel
(Exclude on Film) | Acceptable | Ignore for Any | **叶**京四电子 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com ## 6.3.2 Cosmetic Check (Display Off) in Active Area It is recommended to execute in clear room environment (class 10k) if actual in necessary. | in necessary. | | | | |------------------------------|----------------|---|------------| | Check Item | Classification | Criteria | | | Any Dirt & Scratch on | Accentable | Ignore for not Af | fect the | | Polarizer's Protective Film | Acceptable | Polarizer | | | Scratches, Fiber, Line-Shape | | $W \le 0.1$ | Ignore | | Defect | Minor | $W > 0.1, L \le 2$ | $n \le 1$ | | (On Polarizer) | | L > 2 | n = 0 | | Dirt, Black Spot, Foreign | | $\Phi \leq 0.1$ | Ignore | | Material, | Minor | $0.1 < \Phi \le 0.25$ | $n \le 1$ | | (On Polarizer) | | Minor Polarizer $W \le 0.1$ $W > 0.1$, $L \le 2$ $L > 2$ $D \le 0.1$ Minor $0.1 < \Phi \le 0.25$ $0.25 < \Phi$ $\Phi \le 0.5$ | | | | | $\Phi \leq 0.5$ | | | | | → Ignore if no Inf | fluence on | | | | Display | | | | | $0.5 < \Phi$ | n = 0 | | Dent, Bubbles, White spot | N. 4. | | | | (Any Transparent Spot on | Minor | | | | Polarizer) | | | | | | | W ≤ 0.1 Ignore
W > 0.1, L ≤ 2 $n ≤ 1L > 2$ $n = 0Φ ≤ 0.1$ Ignore
0.1 < Φ ≤ 0.25 $n ≤ 10.25 < Φ$ $n = 0Φ ≤ 0.5→ Ignore if no Influence onDisplay0.5 < Φ$ $n = 0$ | | | | | | | | | | | | | Fingerprint, Flow Mark | N 4° | NT 4 A 11 1 | 1 | | (On Polarizer) | Minor | Not Allowab | oie | - * Protective film should not be tear off when cosmetic check. - ** Definition of W & L & Φ (Unit: mm): $$\Phi = (a+b)/2$$ Doc. No: SAS1-E024-A 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ## 6.3.3 Pattern Check (Display On) in Active Area | Check Item | Classification | Criteria | |---------------|----------------|----------| | No Display | Major | | | Missing Line | Major | | | Pixel Short | Major | | | Darker Pixel | Major | | | Wrong Display | Major | | | Un-uniform | Major | | 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ## 7. Package Specifications | Item | | | Quantity | |---------------|-----|-----|--| | Holding Trays | (A) | 15 | per Primary Box | | Total Trays | (B) | 16 | per Primary Box (Including 1 Empty Tray) | | Primary Box | (C) | 1~4 | per Carton (4 as Major / Maximum) | Doc. No: SAS1-E024-A #### 8. Precautions When Using These OEL Display Modules #### 8.1 Handling Precautions - 1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position. - 2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance. - 3) If pressure is applied to the display surface or its neighborhood of the OEL display module, the cell structure may be damaged and be careful not to apply pressure to these sections. - 4) The polarizer covering the surface of the OEL display module is soft and easily scratched. Please be careful when handling the OEL display module. - 5) When the surface of the polarizer of the OEL display module has soil, clean the surface. It takes advantage of by using following adhesion tape. - * Scotch Mending Tape No. 810 or an equivalent Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy. Also, pay attention that the following liquid and solvent may spoil the polarizer: - * Water - * Ketone - * Aromatic Solvents - 6) Hold OEL display module very carefully when placing OEL display module into the system housing. Do not apply excessive stress or pressure to OEL display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases. - 7) Do not apply stress to the LSI chips and the surrounding molded sections. - 8) Do not disassemble nor modify the OEL display module. - 9) Do not apply input signals while the logic power is off. - 10) Pay sufficient attention to the working environments when handing OEL display modules to prevent occurrence of element breakage accidents by static electricity. - * Be sure to make human body grounding when handling OEL display modules. - * Be sure to ground tools to use or assembly such as soldering irons. - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments. - * Protective film is being applied to the surface of the display panel of the OEL display module. Be careful since static electricity may be generated when exfoliating the protective film. - 11) Protection film is being applied to the surface of the display panel and removes 中景远电子 Doc. No: SAS1-E024-A the protection film before assembling it. At this time, if the OEL display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5). 12) If electric current is applied when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above. #### 8.2 Storage Precautions - 1) When storing OEL display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from TOPWIN Technology Inc.) - At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them. - 2) If electric current is applied when water drops are adhering to the surface of the OEL display module, when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above. #### **8.3 Designing Precautions** - 1) The absolute maximum ratings are the ratings which cannot be exceeded for OEL display module, and if these values are exceeded, panel damage may be happen. - 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible. - 3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A) - 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices. - 5) As for EMI, take necessary measures on the equipment side basically. - 6) When fastening the OEL display module, fasten the external plastic housing section. - 7) If power supply to the OEL display module is forcibly shut down by such errors as taking out the main battery while the OEL display panel is in operation, we cannot guarantee the quality of this OEL display module. - 8) The electric potential to be connected to the rear face of the IC chip should be as follows: SSD1322 - * Connection (contact) to any other potential than the above may lead to rupture of the IC. 电话: 18601955397 QQ:2984664835 淘宝网店: https://shop73023976.taobao.com Doc. No: SAS1-E024-A ### 8.4 Precautions when disposing of the OEL display modules 1) Request the qualified companies to handle industrial wastes when disposing of the OEL display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.